
FirmUp: Precise Static Detection of Common
Vulnerabilities in Firmware

Yaniv David
Technion, Israel

yanivd@cs.technion.ac.il

Nimrod Partush
Technion, Israel

nimi@cs.technion.ac.il

Eran Yahav
Technion, Israel

yahave@cs.technion.ac.il

Abstract
We present a static, precise, and scalable technique for find-
ing CVEs (CommonVulnerabilities and Exposures) in stripped
firmware images. Our technique is able to efficiently find
vulnerabilities in real-world firmware with high accuracy.

Given a vulnerable procedure in an executable binary
and a firmware image containing multiple stripped binaries,
our goal is to detect possible occurrences of the vulnerable
procedure in the firmware image. Due to the variety of ar-
chitectures and unique tool chains used by vendors, as well
as the highly customized nature of firmware, identifying
procedures in stripped firmware is extremely challenging.

Vulnerability detection requires not only pairwise similarity
between procedures but also information about the relation-
ships between procedures in the surrounding executable. This
observation serves as the foundation for a novel technique
that establishes a partial correspondence between procedures
in the two binaries.

We implemented our technique in a tool called FirmUp and
performed an extensive evaluation over 40 million proce-
dures, over 4 different prevalent architectures, crawled from
public vendor firmware images. We discovered 373 vulner-
abilities affecting publicly available firmware, 147 of them
in the latest available firmware version for the device. A thor-
ough comparison of FirmUp to previous methods shows that
it accurately and effectively finds vulnerabilities in firmware,
while outperforming the detection rate of the state of the art
by 45% on average.
ACM Reference Format:
YanivDavid, Nimrod Partush, and Eran Yahav. 2018. FirmUp: Precise
Static Detection of Common Vulnerabilities in Firmware. In Pro-
ceedings of 2018 Architectural Support for Programming Languages
and Operating Systems (ASPLOS’18). ACM, New York, NY, USA,
13 pages. https://doi.org/https://doi.org/10.1145/3173162.3177157

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-4911-6/18/03. . . $15.00
https://doi.org/https://doi.org/10.1145/3173162.3177157

1 Introduction
From backbone routers and traffic lights, to home modems
and connected refrigerators, embedded devices have an ever-
growing presence in modern life.
Embedded devices are closed systems, booting to a con-

solidated software package known as firmware. With the
increasing number of IoT devices (expected to reach 20 bil-
lion in 2020 [13]) and the constant addition of new features,
the total volume of firmware code has grown by orders of
magnitude in recent years. Maintaining this wide range of
devices and the different versions of firmware images is an
extremely challenging task.

Over the years many critical security vulnerabilities were
discovered on numerous devices. Notable examples include
crippling Distributed Denial of Service (DDoS) attacks on
backbone services like Domain Name Service (DNS) [10]
and exploits for medical pacemakers [14]. These attacks, and
similar potential attacks, have vast implications, including
financial damage [11] and even risk to human life.

Moreover, since vendors rely heavily on general-purpose
packages integrated in their firmware images, any vulnera-
bility found in these packages may open an entire product
line to an attack. This eventuality was throughly explored
by Costin et al., [16], who reported a staggering number of
693 vulnerable firmware images by using meta-data alone. A
responsible company, or a security-savvy individual, should
be able to know whether their device is affected by newly
published vulnerabilities, yet this is far from being the case.
Firmware is often customized per device Vendors do not
provide information about the composition of their firmware,
and often the exact composition of the firmware image is
not well known even to them [12]. Furthermore, firmware is
often customized and optimized to contain only parts of a
library to match the particular device on which it runs.
Unpacking the firmware images and exploring the de-

vice’s file-system usually provides little insight, as the exe-
cutable files are often stripped from debug information for
space considerations. Running the said executables requires
command-line access to the architecture and environment of
the executable, which is not trivial to attain. Directly search-
ing for the vulnerable assembly code in firmware executables
is also challenging, as each vendor may use unique build tool
chains, which lead to vast syntactic differences in the assem-
bly.

Session 4B: Program Analysis ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

392

https://doi.org/https://doi.org/10.1145/3173162.3177157
https://doi.org/https://doi.org/10.1145/3173162.3177157

Problem definition Given a collection of executables F =
{T1, ...,Tn} (e.g., a firmware image), and a query executable
Q , containing a (vulnerable) procedure qv , our goal is to de-
termine for each executable Ti ∈ F whether it contains a
similar procedure to qv . We define two procedures as similar
if they originate from the same source code. Similarity is
subject to changes in source code (patching, versions) and
declines as procedures differ semantically. Each of the ex-
ecutables in F may be compiled by any compiler, and can
also be stripped of all name information.
ExistingApproaches Binary code search is awell-researched
problem, but previous approaches are heavily biased towards
either end of a spectrum:

• Using several basic blocks or, at best, a single procedure
to create a signature for the vulnerability [17–19, 23,
27]. The signature is generated using a combination
of the code inside the basic blocks, and the structure
of the control flow graph (CFG).
• Comparing whole binaries, attempting to find a full
isomorphism for individual CFGs or call-graphs and
pinpoint from it the vulnerable procedure [8].

The former approach ignores relevant and valuable infor-
mation included in the binary, i.e, the surrounding proce-
dures. The latter fails to recognize that modern software is
built to conform to different environments and needs, caus-
ing wide variance in capabilities (e.g., wget can be compiled
with or without SSL support, and curl can be compiled with-
out cookie support). This leads to vast differences in structure
and hinders any chance of reaching full isomorphism. These
circumstances cause previous work to suffer from high false
positive rates, as we show in our experiments, which include
a comparison to (a prominent representative of) each side of
the spectrum (GitZ [18] and BinDiff [8]).

1.1 Our Approach
We propose a new approach to finding similarity over pro-
cedures, in the context of the surrounding executable. Our
approach is based on the following key ideas:
Representing procedures using canonical fragmentsWe
build on our previous work [17] and further improve their
Strands-based representation. Strands are data-flow slices of
basic blocks, canonicalized and normalized to allow for a scal-
able yet precise cross-{compiler, optimization, architecture}
binary code similarity.
We found that the detection of many similar strands is

still hindered by syntactic residue, a conclusion we reached
by observing the effects of syntactic differences that resulted
from vendors using a variety of CPUs and custom build-tools
for firmware. To address this, we have further refined the
semantics represented by a strand to dissolve such residues.
This was achieved by offset elimination and register folding.
These adaptations are explained in detail in Section 3.

Using the information in the surrounding executable
We broaden the scope of procedure similarity beyond the
procedure itself, and observe the neighboring procedures (all
other procedures in the executable). This is guided by the
observation that procedures always operate within an exe-
cutable, and will therefore almost always appear with some
subset of the neighboring procedures. Using information
from neighboring procedures greatly improves accuracy.
Efficiently matching procedures in the context of exe-
cutables To find procedure similarity within the context of
an executable, we require not only to match the procedure
qv ∈ Q itself to some procedure t ∈ T , but also the surround-
ing procedures inQ andT (or at least some of them). Produc-
ing a full matching over executables containing thousands
of procedures is inopportune because finding an optimal full
matching is computationally costly.
Instead, we employ an algorithm for producing a par-

tial matching, focused on the query procedure qv (i.e., the
matching need not match all procedures, but must contain
qv). Our algorithm is inspired by model theory’s back-and-
forth games [21], which provide a more efficient replacement
for full-matching algorithms when the sets being matched
are very large (but not infinite). In our scenario, as matching
procedures is a costly operation, performing a full match
will not scale to whole datasets of firmware, making a pre-
cise partial match a much better approach. We illustrate our
game algorithm in Section 2.2 and provide a full description
in Section 4.
Main contributions In this paper we make the following
contributions:

• We present a novel technique for binary code search,
balancing focus between the query procedure and the
executable it resides in. The approach is based on ro-
bust underlying semantic procedure similarity, and
makes use of our key observation that procedures op-
erate in the context of their executable.
• We propose an algorithm for using surrounding proce-
dures in the executable to find amore precise matching
for a query procedure, through the use of a back-and-
forth game.
• We implement our approach in a tool called FirmUp,
built to allow similarity search for executables found in
common embedded devices: MIPS32, ARM32, PPC32, and
Intel-x86. We provide an extensive evaluation of the
precision of FirmUp, including a detailed comparison to
previous work, showing that it achieves substantially
better results.
• We used FirmUp in our motivating scenario, search-
ing for common vulnerabilities and exposures (CVEs)
in over 40 million procedures from firmware images
crawled in-the-wild. FirmUp was able to correctly lo-
cate 373 previously undiscovered vulnerable procedures

Session 4B: Program Analysis ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

393

in publicly available firmware, 147 of which affect up-
to-date versions of the firmware.

2 Overview
In this section, we illustrate our approach informally using an
example. Given a query procedure and containing executable,
our goal is to find a similar procedure in other stripped
executables.

2.1 Pairwise Procedure Similarity

1 jalr t9
2 move s2 , a0
3 move s5 , v0
4 li v0 , 0x1F

5 lw gp , 0x28+sp
6 bne s5, v0 , 0x40E744

7 move v0, s5

1 addiu a2, sp, 0x20

2 move s4, a1
3 jal 0x40B2AC

4 move s5, a0
5 li v1 , 0x1F

6 beq v0, v1, 0x40B518

7 lui s6, 0x47

(a) gcc v.5.2 -O2 (b) NETGEAR device firmware

Figure 1. Wget ftp_retrieve_glob() vulnerability snip-
pets

The syntactic gap Consider the MIPS assembly code snip-
pets in Fig. 1. Although syntactically very different and shar-
ing no lines of code whatsoever, the snippets belong to the
first basic block (BB) of the same ftp_glob_retrieve() proce-
dure from Wget. The syntactic difference stems from having
compiled the procedures in different settings and with dif-
ferent tool chains. Fig. 1(a) was compiled from Wget 1.15,
using the gcc 5.2 compiler at optimization level 2, while the
compilation setting of Fig. 1(b) is unknown as it belongs to
a stripped firmware image of a NETGEAR device, which was
crawled from the vendor’s public support site. Despite their
syntactic variation, the snippets share much of the same
semantics:
• Both snippets retrieve a value from the stack (line 5 in
(a), line 1 in (b)).
• Both load the value 0x1F and use it in a jump compar-
ison operation (lines 4 and 6 in (a), lines 5 and 6 in
(b)).
• Both snippets call a procedure (line 1 in (a), line 3 in
(b)).

Although not semantically equivalent, the procedures share
great similarity, but finding this similarity is made difficult
by the variance in instruction selection, ordering and register
usage, as well as different code and data layout (offsets).
Capturing semantic similarity To allow our technique to
find similarity over binaries originating from different com-
pilations, we use a procedure representation inspired by [18],
and adapt it to our needs. We first decompose a procedure
at the BB level (a BB is a node in the procedure’s CFG), and
further apply slicing [30] at the BB level to generate focused
fragments of computation. We then use a compiler optimizer

to bring the fragments, which we refer to as strands, to suc-
cinct canonical form, while also normalizing register names
and base address offsets. The representation of a procedure
as a set of strands allows capturing of semantic similarity,
as the concrete details pertaining to how a calculation was
performed were abstracted away through the transformation
to strands, which reflect only what was computed. We define
the similarity of a pair of procedures (q, t) as the number of
strands shared by the procedures, and denote it Sim(q, t). We
further elaborate on the strand creation process in Section 3.

2.2 Efficient Partial Executable Matching

Similarity in the scope of a single procedure is inaccu-
rate

Although procedure-level similarity may achieve fair pre-
cision, in some scenarios using the additional information
provided by the containing executable can significantly re-
duce the number of false matches.
Fig. 2 illustrates our approach through the actual search

process performed for the qv = ftp_glob_retrieve() query
found in the Q = Wget executable, from Fig. 1(a), searched
for in a found-in-the-wild firmware image F , of a NETGEAR

device, partially featured in Fig. 1(b).
Initially, in Fig. 2(a.0), an attempt is made to match the

query procedure with a procedure from a target executable
originating from the NETGEAR firmware image. Using a naive
pairwise similarity based approach, the query procedure will
be matched with the procedure in the target executable T
with whom it shares the highest similarity score Sim, that
being the sub_443ee2() procedure.
When a broader, executable-level similarity measure is

used, as in Fig. 2(a.1-2), this selection is found to be a mis-
match, only occurring due to the larger size of sub_443ee2(),
and because, having undergone different compilations,
ftp_glob_retrieve() and its true positive sub_4ea884(), share
fewer strands and thus have a lower Sim score. We note that
simply normalizing the score by the size of the procedure
would not resolve this issue, as the size of a procedure is
affected by many factors, most having little to do with the ac-
tual semantics. For example, a low optimization level can lead
to the creation of a huge amount of code, a size-oriented opti-
mizationwill shrink it, but a very high optimization can again
inflate the code size by loop unrolling. This mismatch demon-
strates the limitation of procedure-centric approaches as, for
example, GitZ [18] would falsely match ftp_glob_retrieve()

with the sub_443ee2() procedure. (We further elaborate in
our comparison to GitZ in Section 5.3.)

This mismatch can be identified by performing the reverse
search, that is, searching for the most similar procedure to
sub_443ee2() in the query executable (a.1). Doing so results
in matching a different procedure– get_ftp(), showing that
the original match is inconsistent, as one would expect to get
the same result regardless of the search direction.

Session 4B: Program Analysis ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

394

𝑆𝑖𝑚 = 51

Matched

Procedure

Similarity

Matching

(with score)

Executable

?

ftp_
retrieve_
glob()

sub_
443ee2()

(a) Procedure–Centric Search

ftp_
retrieve_
glob()

sub_
443ee2()

get_
ftp()

(a.1)

(b) Executable–Centric Search

ftp_
retrieve_
glob()

url_
parse()

sub_
491b00()

(a.2)

(b.1)

(b.2)sub_
443ee2()

get_
ftp()

sub_
4ea884()

𝑆𝑖𝑚 = 71𝑆𝑖𝑚 = 44𝑆𝑖𝑚 = 53

Unmatched

Procedure
𝑆𝑖𝑚
=
53

sub_
4ea884()

skey_
resp()

skey_
resp()

url_
parse()

(a.0)

𝑆𝑖𝑚 = 71

sub_
491b00()

Figure 2. The search process for Wget’s vulnerable ftp_glob_retrieve() procedure, searched against a found-in-the-wild
NETGEAR device firmware, in (a) procedure-centric search (on the left) and (b) executable-centric search (on the right)

Another approach to addressing this problem is to match
all the procedures and thus establish a full matching between
the executables. While a step in the right direction, this ap-
proach is severely limited by the assumption that the whole
structure of the executable is similar, which is not always
the case. Major differences in executable structure are often
caused by the build configuration selected. For example, in
our case the query executable was compiled using default
settings, leading to the skey_resp(), a procedure handling
the OPIE authentication scheme for sftp, to be compiled
into it, as seen in Fig. 2(a.1). For reasons unknown to us, in
this particular instance the vendor compiled Wget with the
--disable-opie option, leading to the omission of this pro-
cedure from the target executable. This change can create a
“domino effect”, causing several procedures to bemismatched.
Our approach focuses instead on the query procedure, in an
attempt avoid such inconsistent and inaccurate results.
Procedure similarity in the scope of an executable using
back-and-forth games Fig. 2(b) illustrates the transition
from a procedure-level similarity metric to an executable-
level similarity metric, where the scope is broadened by the
additional information in the query (b.1) and target (b.2)
executables. This result is reached by using an algorithm
implementing a back-and-forth game, which establishes and
extends a more appropriate partial matching, restricted only
by the requirement that it must contain the query procedure.
Outlining a matching from a two-player game The
matching in Fig. 2(b) adheres to the moves of two par-
ticipants, a player and a rival, in a back-and-forth game.
The game starts by the player picking a matching t1 =
sub_443ee2() ∈ T for the query qv = ftp_glob_retrieve(),
passing the turn to the rival, who then tries to pick a bet-
ter matching for the target procedure t1. The rival selects
q1 = get_ftp() ∈ Q as an alternative and preferable match
to t1, since Sim(sub_443ee2(), get_ftp()) >
Sim(sub_443ee2(), ftp_glob_retrieve()), forcing the player

to reiterate. The game proceeds as described in Tab. 1, until
the rival is left with no moves as there are no higher similar-
ity picks for the procedures in the matching. At this point
the query procedure qv is matched with its true positive,
t3 = sub_4ea884(). Back-and-forth games, along with an al-
gorithm for producing partial matchings from games, are
detailed in Sec. 4.

Actor Step Matching

player Matches qv = ftp_glob_retrieve()

with t1 = sub_443ee2() {(qv , t1)}

rival Matches t1 with q1 = get_ftp()

Sim(q1, t1) = 71 > 53 = Sim(qv , t1) {(qv , t1)}

player Counters by matching q1 with t1 {(qv , t2),
and matching qv with t2 = sub_491b00() (q1, t1)}

rival Matches t2 with q2 = parse_url() {(qv , t2),
Sim(q2, t2) = 51 > 47 = Sim(qv , t2) (q1, t1)}

player Counters by matching q2 with t2 {(qv, t3),
and matching qv with t3 = sub_4ea884() (q2, t2)}

(q1, t1)}

rival Left with no valid moves. Game Over

Table 1. Game course for Fig. 2

3 Representing Firmware Binaries
3.1 Binary Lifting

From bits to intermediate representation (IR) Stripped
executables required the use of mechanisms for lifting bits
from various architecture to a more expressive represen-
tation, as we need to reason over procedure semantics to
find similarity. Using the procedure assembly, which can
be extracted (relatively) easily using disassemblers [2, 6], is
problematic as assembly instructions are made to be succinct

Session 4B: Program Analysis ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

395

and not expressive. For instance sub-parts of the same regis-
ter will appear as differently named variables in the assembly
(mov rax, 0 vs. mov eax, 0). Another example is the lack
of side-effect expressiveness, for instance in a comparison
operation cmp rax, rbx, the register flags affected by the
operation do not appear in the instruction (or in any of the
instructions).

We opted to use the Angr.io framework [29] and its Valgrind
based VEX representation [25] as our lifting tool chain. Angr.io
is a well-maintained and robust framework, containing a
wrapper for Valgrind’s VEX-IR. Angr.io offers lifting from
various architectures, which enabled us to operate over the
most common architectures found throughout our firmware
crawling process (Sec. 5.1). The VEX-IR contains full represen-
tation of the machine state, including side-effects, for each of
the translated instructions. We used IDA Pro [6] for the pars-
ing and extraction of procedures and BBs from executables,
as we noticed that overall it is more accurate when tasked
with finding all procedures and blocks in the executable.
Translating embedded architecturesHandling four differ-
ent target architectures, MIPS32, ARM32, PPC32 and Intel-x86,
and specifically executables originating from real firmware
images, holds some caveats. First, many of the executables
either had a corrupt Executable and Linkable Format (ELF)
header, or were distributed with the wrong ELFCLASS. Specif-
ically we found that the existence of MIPS64 executables
(8-byte aligned instructions) with a ELFCLASS32 header is
common in firmware. Another caveat, in MIPS executables,
is the use of a delay branch slot, which requires an additional
instruction to follow any branch instruction. This additional
instruction will be executed while the branch destination is
being resolved. This results in the first instruction of the sub-
sequent block being omitted from it and placed as part of the
preceding block, which leads to strand discrepancy. Finally,
as mentioned, binary lifting tools may still fail to identify
several blocks in some procedure, or even omit entire proce-
dures altogether. This is exacerbated in the stripped scenario.
We implemented means for overcoming these caveats and
further corroborating the results of the lifter, to avoid erro-
neous results. We added checks for CFG connectivity and
coverage of unaccounted-for areas in the ṫext section of the
ELF file. In an attempt to improve the underlying tools, we
provided their creators with our implementations and find-
ings, which were then often adapted into the tool as a patch
or a feature.

3.2 Procedure Decomposition

Procedures to strands Our decomposition of procedures is
based on CFG representation, where we initially decompose
each procedure at BB level. A BB may contain instructions
which relate to different executions but reside together due
to compiler considerations. Thus we further decompose BBs
to independent units of execution by applying slicing [30].

This results in several sub-blocks, each containing only the
instructions needed for computing a single output (the Use-
Def chain for an outward facing value computed in the BB).
This composition is inspired by previous work [17], and thus
we also refer to these sub-blocks as Strands. Alg. 1 contains
the algorithm for the block decomposition.

Algorithm 1: Procedure Decomposition
Input: bb – the BB’s instructions (in SSA, as a List)
Output: strands – the resulting strands

1 strands← ∅, indexes← {0, 1, ..., |bb| − 1}
2 while |indexes| > 0 do
3 top← Max(indexes)
4 indexes \ = {top}
5 (s← List()).append(bb[top])
6 svars← RSet(bb[top])
7 for i← (top − 1) .. 0 do
8 if WSet(bb[i]) ∩ svars , ∅ then
9 s.append (bb[i])

10 svars ∪ = RSet(bb[i])
11 indexes \ = {i}

12 strands ∪ = {s}

In Alg. 1, each BB is sliced until all values are covered. We
assume the BB is in Single Static Assignment (SSA) form, a
property of the VEX-IR liftingwe use.We initialize the process
by defining the set of all instructions (indexes) in the BB. We
iterate over this set, where in every step the last uncovered
instruction so far (top) is selected. top is used as the basis for
a new strand (s). The strand is built by iterating backwards
over the BB’s instructions and adding each instruction only if
it defines a variable used by s. In the notation of Alg. 1 we use
RSet(i) as the set of variables read (or used) by an instruction
i , and WSet(i) as the set of variables it writes (or defines). In
any case, once an instruction is covered by any strand, it
is removed (by index) from indexes. As we handle each BB
separately, the inputs for a block are variables (registers and
memory locations) used before they are defined in the block.

3.2.1 Optimizing and Normalizing Strands
To overcome syntactic differences between different compi-
lations of the same procedure, we further operate to bring
semantically equivalent strands to the same syntactic form.
Capturing similarity through syntactic comparison is crucial
to our technique’s ability to detect similar strands. We apply
the following normalization and optimization operations to
bring strands to a succinct, canonical form:
Offset elimination The first step towards canonical form
is the removal of offset values that pertain to the concrete
structure of the binary file. The removal is performed on the
strands produced by Alg. 1. This includes jump addresses

Session 4B: Program Analysis ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

396

and addresses pointing towards static sections (e.g. .data)
in the executable. We do not remove offsets which pertain
to stack and struct manipulation, as they are more relevant
to the semantics of the procedure, serving as a descriptor of
the type of data the procedure handles.
Register folding Registers which are read before written to
are translated as the arguments to the procedure, and the
last value computed by the strand is the return value. We
note that even if the return value from a procedure is stored
in a register, the value returned must be first generated in
the procedure, and so will be captured in the strand.
Compiler optimization Next, we apply the LLVM opt opti-
mizer on each of the strands from the previous offset elimina-
tion step. This is enabled by a translation of VEX-IR strands to
LLVM-IR. Each strand is translated to a LLVM-IR function. The
use of the full-blown modern optimizer allows the transfor-
mation of strands to a succinct and canonical form, which is
useful for finding similarity. Relevant optimizations include
expression simplification, constant folding and propagation,
instruction combining, common subexpression elimination
and dead code elimination.
Variable name normalization To further advance a strand
towards canonical form, we rename variables appearing in
the optimized strand according to the order in which they
appear. This technique is inspired by previous work aimed
at finding equivalence over computations [15]. The output
of this final stage are the canonical strands we use for our
pairwise procedure similarity metric. We denote Strands(p)
as the set of canonical strands (each strand is represented as
a string of its instructions) for a procedure p. Any reference
to strands from this point onwards would be to the canonical
strands produced by this stage.

Fig. 3 shows an example of a (single) strand extracted from
the BB in Fig. 1(a) and the corresponding lifted strand and
canonical strand it was transformed to. The strand is respon-
sible for deciding the branch destination. The lifted strand (in
the middle) preserves the assembly operation verbatim, and
adds a temporary variable for each value operation. Explicit
register names and offsets are also kept. After optimizing
and normalizing names and offsets (resulting in the bottom
strand), the entire operation of the assembly strand (top)
is reduced to the first instruction of the LLVM-IR canonical
strand (bottom), comparing the normalized register reg0 (pre-
viously s5) with the 0x1F constant, which was folded into
the v0 register. The following instructions reflect the branch
operation and either return the normalized offset offset0 or
the next program counter value held in pc.

3.3 Pairwise Procedure Similarity
After generating the set of strands for each procedure, we
compute pairwise similarity. We denote a query procedure,
i.e., the procedure being searched for, as qv ∈ Q , where Q is
the set of all procedures in the containing query executable.

move s5, v0
li v0 , 0x1F

bne s5, v0 , 0x40E744

↓Lif t

v0 = external global i32
s5 = external global i32
pc = external global i32
define i32 strand () {

entry: t0 = v0

store i32 s5, t0

t1 = 0x1F

store i32 v0, t1

t0 = icmp ne i32 t0, t1

br i1 t0, label if.true , label if.false

if.true: ret i32 0x40E744

if.false: ret i32 pc
}

↓Optimize,Normalize

define i32 strand(i32 reg0 , i32 offset0 , i32 pc) {

entry: t0 = icmp ne i32 reg0 , 0x1F

br i1 t0, label if.true , label if.false

if.true: ret i32 offset0

if.false: ret i32 pc
}

Figure 3.Assembly strand computing the branch destination
result (top) and its lifted LLVM-IR strand (middle) and final
canonical LLVM-IR form (bottom)

The target procedure, i.e., the candidate procedure q is being
compared to, is denoted by t ∈ T (similarly, T being the
containing target executable). Given a pair (q, t), we define
procedure similarity as follows:

Sim(q, t) = |Strands(q) ∩ Strands(t)|,

i.e., Sim(q, t) is simply the number of unique canonical strands
that are shared in both representations. To calculate Sim
faster, we keep the procedure representation as a set of
hashed strands (without consideration for hash counts).

4 Binary Similarity as a Back-and-Forth
Game

4.1 Game Motivation

Procedure-centricmatching is insufficientWefirst show
the intuition for using a game algorithm as a means to find
procedure similarity while accounting for the surrounding
context. The goal is to transition from a local match, which
relies on a local maximum of similarity score, to a global
maximum. This is done by composing a matching that is
expected to maximize overall similarity across the binaries.
Fig. 4 illustrates a conceptual example for matching a pro-
cedure q1 ∈ Q with a procedure in an executable T . The
notation is similar to Fig. 2, where squares represent executa-
bles which are sets of procedures and circles are procedures
which are sets of strands denoted as si .

The procedure-centric approach in Fig. 4(a) immediately
matches q1 with t1 as it has the most shared strands. We

Session 4B: Program Analysis ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

397

(a) procedure-centric

matching

𝑞2
𝑠1, 𝑠3, 𝑠4

𝑠5

𝑠1, 𝑠2, 𝑠3
𝑠4, 𝑠5

𝑠2, 𝑠3

𝑡1 𝑡2

𝑄

𝑇

𝑆𝑖𝑚 = 3

(b) executable-centric

matching

𝑆𝑖𝑚 = 4

𝑄

𝑇

𝑆𝑖𝑚 = 2

𝑞1
𝑠1, 𝑠2, 𝑠3

𝑞2
𝑠1, 𝑠3, 𝑠4

𝑠5

𝑠1, 𝑠2, 𝑠3
𝑠4, 𝑠5

𝑠2, 𝑠3

𝑡1 𝑡2

𝑞1
𝑠1, 𝑠2, 𝑠3

Figure 4. Two approaches for finding a similar procedure
to q1 ∈ Q , within the executable T . The procedure-centric
approach on the left leads to a less accuratematching. Strands
{s1, s2, s3, s4, s5} are spread over all procedures.

denote q PC
∼
Q,T

t as matching the procedure q with a procedure

t that has the maximal similarity (Sim(q, t)) score in T . The
q1

PC
∼
Q,T

t1 matching ignores the neighboring procedures in the

executables, resulting in a sub-optimal match. The existence
of q2 and t2, and the higher similarity score of q2 and t2,
indicate that t2 is a more correct matching for q1, in a global
view. (This is also the case in Fig. 2(a), resulting in a false
matching for a real world example.)
Knowledge in surrounding executable leads to bettermatch-
ing To induce a better matching, we constrain the matching
process with the rules of a two-player game, inspired by
model theory’s notion of back-and-forth games, also called
Ehrenfeucht- Fraïssè games [21]. The main premise of the
game is that the player trying to match a procedure qv is
countered with a rival.

Applying these notions to the example from Fig. 4 creates
the following game scenario:
• The player performs its first selection, t1 ∈ T , as it
is the best match for q1. The rival tries “to show the
player it was wrong” by selecting a different procedure
q2 ∈ Q with a higher similarity score Sim(q2, t1) >
Sim(q1, t1).
• The player corrects its selection by adapting (q2, t1) as
part of the matching and choosing another procedure
t2 ∈ T as a pairwise matching for q1.
• Following this selection, the rival cannot find a better
match for t2 and “forfeits the game”.

Formalizing the intuition behind the game
Using Sim(q, t) = ζ , we define q ∼

Q,T
t in Eq. 1

q ∼
Q,T

t expresses the back-and-forth selection process. In

this process the best match for q will be ignored if there exist
a better match between other procedures in Q and T .

In this definition, each matched procedure pair (q, t) is the
best match among all of the procedures in T and Q , while

q ∼
Q,T

t

⇕(∀qi ∈ Q,qi , q ⇒[
Sim(qi , t) < ζ ∨
∃ti′ ∈ T , ti′ , t , Sim(qi , ti′) ≥ Sim(qi , t) ⇒ qi ∼

Q,T
ti′

])
∧

(∀tj ∈ T , tj , t ⇒[
Sim(q, tj) < ζ ∨
∃qj′ ∈ Q,qj′ , q, Sim(qj′, tj) ≥ Sim(q, tj) ⇒ qj′ ∼

Q,T
tj

])
(1)

other procedures are explicitly allowed to be a better match
if and only if these other procedures have a different better
match themselves. The first big parentheses express the op-
tion that another procedure, qi , q, is a better local match
for t , meaning that Sim(q, t) < Sim(qi , t). This is allowed as
long as qi has another better global match ti′ ∈ T , so that
qi ∼

Q,T
ti′ . The second big parentheses express the same pos-

sibility for the other direction. There can be tj , t for which
Sim(q, t) < Sim(q, tj), as long as tj has another better match
qj′ ∈ Q , so that qj′ ∼

Q,T
tj .

It is important to note that these requirements do not
force a full matching between the executables; they will only
create the needed additional matches between the executable
procedures, to allow for a consistent match (and for the
player to win).
Implementing the matching algorithm according to the

aforementioned game, where the player aims to win and thus
needs to account for the context of the whole executable,
leads to better matchings.

4.2 Game Algorithm
Alg. 2 details our similarity game algorithm. Because the
algorithm implements the winning strategy for the player
trying to match a query, this is not an explicit two-step
algorithm performed by the two players.

The algorithm accepts as input the query executable, query
procedure, and target executable. Each executable is repre-
sented as a set of procedures, and each procedure is rep-
resented by the set of its strands extracted as described in
Section 3.
In line 1 we create an empty dictionary, Matches, which

will accumulate all the matched procedures, i.e., procedures
q ∈ Q, t ∈ T for which q ∼

Q,T
t . In line 2 we initialize a

stack, ToMatch, to hold all the procedures we are trying to
match. In this process we also push qv as this is the primary
procedure we need to match.

Following the initializations we start the matching game,
expressed as a while loop, which ends when the game ends.

Session 4B: Program Analysis ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

398

Algorithm 2: Similarity Game Algorithm
Input: T – The target executable procedures

Q – The query executable containing qv
qv – The vulnerable procedure in Q

Output: Matches – The resulting partial matching,
containing (at least) a matching for qv

1 Matches← {} , ToMatch← Stack()

2 ToMatch.Push(qv)
3 while GameDidntEnd() do
4 M ← ToMatch.Peek()
5 if M ∈ Q then
6 My,Other ← Q,T

7 else
8 My,Other ← T ,Q

9 Forward ← GetBestMatch(M,Other,Matches)
10 Back ← GetBestMatch(Forward,My,Matches)

11 if M== Back then
12 Matches+= M ↔ Forward
13 ToMatch.Pop (Matches)
14 else
15 ToMatch.PushIfNotExists([Forward,Back])

Game ending conditions are checked by the GameDidntEnd()

procedure, to be described later. In each loop iteration, or
step in the game, we try to match the procedure at the head
of the ToMatch stack (retrieved by Peek() in line 4). We
resolve in which direction we will perform the match, by
checking whether it is part of Q or T , and setting My and
Other. We perform a forward match, i.e., we search for the
best match for M in Other, while ignoring all previously
matched procedures. This is done by calling GetBestMatch()

(line 9). Using the best match for M, Forward, we perform
the backwards match, and store the result in Back (line 10).
Collecting the best matches in both directions gives us two
possibilities:
• Back isM, meaning thatM ∼

Q,T
Forward (checked in line

11). In that case this match is added to Matches, and M
is popped from the stack (lines 12-13).
• Otherwise, we need to find a match for Forward or
Back before we can claim that we have a match for M.
To do that, in PushIfNotExists(), we check if Forward
and Back are already in the stack; otherwise we push
the missing procedures.

The implementation of GameDidntEnd() will check for one
of the following conditions:
• A match was found for qv
• ToMatch has arrived at a fixed state. This will happen
when no new procedures are pushed to ToMatch at

PushIfNotExists() (line 15). In this case the game will
never end, meaning that the matching process will not
succeed.
• As a heuristic, the game can also be stopped if too
many matches were found or ToMatch contains too
many procedures.

4.3 Graph-based Approaches

ftp_retrieve_glob()

(a) Query Call-Graph (b) Target Call-Graph

ftp_retrieve_glob()

Figure 5. The call-graphs surrounding Wget’s
ftp_retrieve_glob() procedure in the MIPS query (left) and
a target from a NETGEAR firmware (right). The variance in
call-graph structure prevents graph based techniques (e.g.,
BinDiff) from succeeding.

Limitations of the graph-based approaches Using a
graph-based technique, which tries to leverage relationships
over the procedures in the form of a call-graph, is prob-
lematic in our scenario. Fig. 5 depicts two samples of call-
graphs, restricted to one level below and two levels above
the ftp_retrieve_glob() procedure from Wget. The sample
on the left belongs to the MIPS query executable, and the
one on the right originated from a NETGEAR firmware. Even
in this limited scope, the variance in call-graph structure
is vast. This can be attributed to the customized nature of
firmware, along with compiler inlining and dynamic call tar-
gets, which produce high variance over the target call-graph,
reducing the accuracy of a graph-based matching. This is
further demonstrated in our evaluation (Section 5.3), show-
ing that BinDiff’s graph-based technique results in poor
precision.

5 Evaluation
We evaluate our approach using FirmUp in the scenario of
identifying vulnerable procedures found in real-world firmware
images, and comparing it to prominent existing work in the
same scenario. The evaluation is thus composed of (i) a de-
scription of the queries and corpus creation process (Sec. 5.1),
(ii) our main experiment, in which vulnerable procedures
were located in publicly available firmware images (Sec. 5.2),
and (iii) a controlled experiment evaluating FirmUp’s accu-
racy alone and in comparison to BinDiff and GitZ (Sec. 5.3).

5.1 Corpus Creation

Into the wild To simulate a real-world vulnerability search
scenario, we created a crawler to collect, unpack, organize

Session 4B: Program Analysis ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

399

and index executables in firmware. Our crawler downloads
firmware images from publicly available repositories of promi-
nent device vendors, including NETGEAR [7], D-Link [4] and
ASUS [1]. We used binwalk [5] for unpacking firmware im-
ages. Out of ∼5000 firmware images collected, only ∼2000
produced usable executables, while others failed to unpack
or consisted only of content or configuration.
After unpacking, the crawled images amounted to
∼200,000 executables. Each executable contained ∼200
procedures on average, resulting in a dataset containing
∼40,000,000 procedures. Finally, the procedures were indexed
as a set of strands (as described in Section 3.2).
Experimental setup Experiments were performed on an
Ubuntu 16.4 machine with two Xeon E5-2699V3 CPUs (36
cores, 72 threads), 368 GiB of RAM, 14 TB HDD. The overall
memory consumption for each thread did not exceed 560
MiB.
Using prominent open-source CVEs as queries To eval-
uate FirmUp’s ability to locate vulnerable procedures, we
gathered query procedures known to be vulnerable to some
attack according to a CVE report. We put an emphasis on
widely distributed software as: (i) we wanted to adhere to a
real-world scenario and (ii) this made the procedure more
likely to be used by some device and thus be found in our
corpus of crawled firmware. To produce our search query, we
used the latest vulnerable version of the software package as
reported by the CVE and compiled it with gcc 5.2 at the de-
fault optimization level (usually -O2). We intentionally chose
a range of diverse procedures, affected by different vulner-
ability types, including DoS due to crafted message (Tab. 2
lines 1,5), BOF (Tab. 2 lines 2,7), input validation (Tab. 2 line
3), information disclosure (Tab. 2 line 4), and path traversal
(Tab. 2 line 6).

5.2 Finding Undiscovered CVEs in Firmware
Tab. 2 shows the results of our experiments with found-in-
the-wild firmware images. 373 vulnerable procedures were
found in publicly available firmware images, 147 of them in
the latest available firmware version for the device. We note
that these experiments included stripped procedures only, to
adhere to a real-world scenario. The use of stripped firmware
also led to new findings, pointing to the exact location of the
vulnerable procedure.

Each line in Tab. 2 depicts an experiment inwhich a vulner-
able procedure was searched for in our corpus of firmware.
Line 1 of the table, for instance, depicts the results of the
experiment designed to search for the vulnerable proce-
dure in CVE-2011-0762. This vulnerability was discovered
in the “Very Secure FTP Daemon” (vsftpd) package. The
relevant executable from the package, the FTP server (aptly
named vsftpd), was found by FirmUp in 76 firmware images.
In this experiment our engine correctly found the vulnerable

vsf_filename_passes_filter() procedure in all of the sus-
pect executables. The false positives (FPs) column measures
the number of procedures wrongly matched by FirmUp to the
vulnerable query, which is 0 for this experiment. The next
column lists the vendors for the devices in which the CVE
was discovered, and the column to the right gives the num-
ber of devices for which the latest firmware version available
is vulnerable. The rightmost column shows average over-
all (user+kernel mode) run time, across three runs, for that
experiment.
Confirming findings Procedures matched by FirmUp to
a vulnerable query procedure were confirmed in a semi-
manual fashion. We used a combination of markers such as
string constants, use of global memory, structures access,
and others more specific to the vulnerable procedure. Addi-
tional matched procedures (excluding the query) were used
to further assist the validation process. We then grouped
procedures according to their effective address in the exe-
cutable (the exact same executable sometimes appeared in
several images) and manually verified the result. We found
that subsequent versions of firmware images targeting the
same device will sometimes not re-compile executables if
they are not part of the software updated in that release.

We note that immense manual effort would be required to
rule out vulnerable procedures not found by FirmUp in this
wild objects scenario. Instead, to measure the precision of
our tool, we performed a controlled experiment described in
Sec. 5.3.
Noteworthy findings False positives: Line 6 of Tab. 2 shows
the experiment with the highest false positive rate overall
(and the only experiment to report false positives). We used
the wget version 1.15 executable as the query sample. Anal-
ysis of the results showed that the 14 FPs were a result of
discrepancies between versions, e.g., the target executable
was a previous (1.12) version of wget. The notable semantic
(and subsequently syntactic) differences over the versions of
the tool were the main reason that the query procedure was
falsely matched with an unrelated target procedure.
Deprecated procedures: Line 3 of Tab. 2 details the result
for the curl_easy_unescape() procedure in libcurl. FirmUp
claimed to locate one supposedly non-stripped sample of
this procedure. This was an unexpected result, as
curl_easy_unescape() is exported in libcurl. In depth exam-
ination uncovered that this is not a stripping error but an
example of a vendor using an old version of curl contain-
ing a predecessor of the query procedure– curl_unescape(),
which was long since deprecated. The deprecated procedure
in this experiment matched our query. We were surprised to
learn that vendors sometimes use very outdated versions of
software in their firmware, despite many CVEs having been
issued for them (more than 39! [3]). The firmware in question
was released in March 2014; however, the curl_unescape()

procedure was deprecated in June 2006 (version 15.4).

Session 4B: Program Analysis ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

400

CVE Package Procedure Confirmed FPs Affected Vendors Latest Time
1 2011-0762 vsftpd vsf_filename_passes_filter 76 0 ASUS,NETGEAR 29 2m
2 2009-4593 bftpd bftpdutmp_log 63 0 NETGEAR 15 4m
3 2012-0036 libcurl curl_easy_unescape 1 0 NETGEAR 0 12s
4 2013-1944 libcurl tailmatch 5 0 ASUS,D-Link 2 1m
5 2013-2168 dbus printf_string_upper_bound 10 0 D-Link,NETGEAR 5 7m
6 2014-4877 wget ftp_retrieve_glob 69 14 ASUS,NETGEAR 35 18m
7 2016-8618 libcurl alloc_addbyter 149 0 ASUS,D-Link,NETGEAR 61 25m

Table 2. Confirmed vulnerable procedures found by FirmUp in publicly available, stripped firmware images

5.3 Evaluating Precision Against Previous Work

Refining Wild Data for a Controlled Experiment
We designed a controlled experiment to accurately evalu-

ate our approach and enable a fair comparison to previous
work. We decided to avoid the use of synthesized targets,
as it was infeasible to create a collection of tool chains di-
versified enough to accurately approximate the wild data.
Instead, we used a subset of a corpus containing executables
where the vulnerable procedures were labeled. These were
split into two groups:

1. Non-stripped executables - these were not very com-
mon, as most firmware software is stripped to save
space. Some non-stripped versions were found in early
releases, probably left there to allow for debugging.

2. Exported procedures - when the query is an exported
procedure, it can be easily located in the binary even
when the executable is stripped. This case is very com-
mon for libraries where many procedures are exported,
for example the procedure exif_entry_get_value()

from libexif, which was affected by CVE-2012-2841

but does not appear in Tab. 2 as the table includes
results over stripped procedures only.

Limiting our experiment to these types of procedures re-
duced our overall number of targets, but allowed us to accu-
rately report precision for each tool. To increase the scope of
the experiment, we added two more CVEs belonging to the
second group from the libexif and net-snmp code packages.
Comparison to BinDiff First we experimented with
BinDiff, which is the de facto industry standard [8]. BinDiff
aims to find similarity between procedures in whole binaries.
It operates over two binaries at a time (a query and a target),
scanning the procedures of both input files and producing a
mapping of the two binaries. This mapping matches a subset
of the procedures in one binary with a subset of the other,
using the control structure of the procedures, call graph and
syntactic matching of instructions (further information can
be found in [9]).
Note that for this scenario we could only run a subset of

our experiment, from the first group of labeled data described
above (non-stripped, non-exported). The other group could
not be used as BinDiff, in its similarity score calculation

0204060 0 20 40 60

tailmatch()

dbus_printf()

alloc_addbyter()

vsf_filename_filter()

ftp_retrieve_glob()

FP FN P

BinDiff FirmUp

Figure 6. Labeled experiment comparing BinDiff with
FirmUp, showing that BinDiff encountered over 69.3% false
results overall compared with 6% for FirmUp

process, attributes great importance to the procedure name
when it exists. As we found no visible way of configuring
BinDiff to ignore this information, we could not objectively
assess its accuracy for these stripped scenarios.

Fig. 6 shows the results of the labeled experiments, using
FirmUp (a) and BinDiff (b). Each line represents an aggrega-
tion of all of the results reported by each tool for a given
query against all the relevant targets, split to (true) posi-
tive, false negative and false positive, marked respectively as
(P), (FN) and (FP). Note that for BinDiff we consider an un-
matched procedure to be a false positive (because we know
it is there), and a matched procedure to be positive or false
positive depending on the correctness of the match.

Aggregating the results, we see that BinDiff suffers from
a very high FP rate, mismatching 85 out of 150 targets (FPr
= 56.6%). It further suffers from a false negative rate of 12%,
and only 32% positive matches.
For the same dataset, FirmUp successfully matches 141

targets, achieving a 96% success rate, with only 4 (2.6%) false
positives and 5 (3.33%) false negatives. The biggest difference
in accuracy was measured in the
vsf_filename_filter() experiment (bottom line). BinDiff
succeeded in matching 26% of the targets, yet still trailed
behind FirmUp, which achieved a perfect result. In the next
experiment, ftp_retrieve_glob() (one line above), BinDiff
detects 5 procedures, yet falsely matches all of the rest, 37 out
of 42. In this case FirmUp successfully identifies 38 targets.

Session 4B: Program Analysis ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

401

(a) FirmUp: tv ✓ (b) qv (c) BinDiff: tj ✗

Figure 7. BinDiff’s disproportionate focus on the pro-
cedure’s internal structure leads to false matches for
vsf_filename_filter()

To better understand why BinDiff performed so poorly
in the vsf_filename_filter() experiment (the bottom line
in Fig. 6), we more closely examined the one false positive it
reported. Fig. 7(b) shows the CFG of the vulnerable proce-
dure, qv . In this graph the nodes are the basic blocks, shown
without their contents (the code) for readability. The edges
are colored green and red for true and false branches respec-
tively, and blue for unconditional control-flow. The CFG of
Fig. 7(c) closely resembles that of Fig. 7(b), causing BinDiff

to report it as a match. This is a false match as this CFG rep-
resents an unrelated procedure in T which we denote by tj .
On the other hand, FirmUp performs a semantic comparison,
relying on shared canonical strands in the blocks of qv and
tv and correctly reports Fig. 7 (a) as the best match.
Comparison to GitZ Next, we experimented with GitZ [18].
We note that GitZ was not designed for our testing scenario,
as it compares procedures while disregarding the origin ex-
ecutable. Moreover, there is no notion of a positive or neg-
ative match; instead, GitZ accepts a single query and a set
of targets and returns an ordered list of decreasingly similar
procedures from the targets.

In the comparison experiment, we used each query against
all the procedures in each target executable, and considered
the first result (top-1) to conclude whether the match was a
positive or a negative. This result is presented in Fig. 8. We
further explored accuracy for the top-k results produced by
GitZ; however, we note that this scenario is much more time
consuming for a human researcher. Thus we did not include
the top-k results of FirmUp in any of the results. The top-k
comparison is reflected in Fig. 9, as explained below.

0 50 100 150 200 250050100150200250

tailmatch()

dbus_printf()

alloc_addbyter()

vsf_filename_filter()

ftp_retrieve_glob()

FP P

snmp_pdu_parse()

bftpdutmp_log_0()

exif_entry_get_value()

curl_easy_unescape()

GitZ FirmUp

Figure 8. Labeled experiment comparing GitZ with FirmUp,
showing that GitZ encountered 34% false positives overall
compared with 9.88% for FirmUp

493

50 31 12 15 7
0

100

200

300

400

500

600

1 2 3-4 5-8 9-16 17-32

#	
co
rre

ct
	m

at
ch
es

# game	steps	needed

Figure 9. Number of procedures correctly matched as a
factor of the number of steps in the back-and-forth game.
180 procedures required more than 1 step for the matching,
up to 32 steps.

To maximize GitZ’s precision and allow for a fair compar-
ison, we trained a global context (a set of randomly sampled
of procedures in the wild used to statistically estimate the
significance of a strand; see [18] for more details) for each
architecture separately, using more than a thousand pro-
cedures for each one, and using the right context for each
comparison. Note that for this experiment we used queries
from both groups mentioned above.
Fig. 8 shows the results of the labeled experiments for

GitZ (a) and FirmUp (b), similarly to Fig. 6. Note that in this
comparison we treated false positives and false negatives
together, marking them as false positives in the figure. GitZ
suffers from relatively poor precision, reporting 274 false
positives, compared with 78 false positives and false nega-
tives combined reported by FirmUp, and shown in the figure
as false positives. For example, in the ftp_retrieve_glob ex-
periment in line 4 GitZ does not report any true positives,
while FirmUp successfully detects 38 of the 42 targets. Fur-
thermore, in the curl_easy_unescape() experiment in line 8,
GitZ only managed to detect 104 targets out of 264, while
FirmUp detected 171.

Next, we examine the contribution of our back-and-forth
approach.
Fig. 9 shows number of game steps required to perform

matches. While 493 of the queries could be matched in one

Session 4B: Program Analysis ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

402

iteration of the game algorithm, 115 procedures (or 19% of
the 608 targets matched in one iteration of the game algo-
rithm) required an additional 1 − 32 more steps to arrive at
the positive match. When a single iteration was sufficient,
strands were shown to be effective in bridging the syntactic
gap over the procedures. When more steps were needed, a
matching process (as in Tab. 1) took place to account for sur-
rounding procedures, correcting matches accordingly. These
cases stem from a range of scenarios, including:

• Very large procedures that are mistakenly matched
with the query due to their size.
• The number of shared strands between the query and
the true positive was very small.
• The true positive and several false positives share an
equal number of strands with the query.

These cases are resolved in our algorithm, which effectively
searches for replacement matches for all candidates, thus
eliminating wrong matches. Without this iterative matching
process, the overall precision drops from 90.11% to 67.3%.

Note that Fig. 9 allows us to evaluate FirmUp vs. GitZwhile
considering the top-k results. Since both tools rely on shared
strands (with further optimizations performed in FirmUp as
described in Sec. 3.2), the top-k accuracy of GitZ can be ap-
proximated by aggregating the columns of Fig. 9. For instance
by observing the 2 game-steps column in Fig. 9, we can see
that considering the top-2 results from GitZ will reduce the
number of false positives by approximately 50.

6 Related Work
Vulnerability search in firmware The authors of [16]
were the first to direct attention to security of embedded
firmware, in the context of locating CVEs. The main goal
of this work was to obtain a quantitative result, as they did
not perform any sophisticated static analysis. Firmware se-
curity was further explored in [24], which used statistical
and structural features of the procedure in order to locate
vulnerabilities in firmware. Their heuristic-based, procedure-
centric approach performs a rather shallow analysis, which
is demonstrated by the low detection rate (38 findings for a
corpus of 420 million procedures and 154 vulnerabilities).
Procedure-centric static approaches Tracelet-based code
search [19] is a syntactic based approach for procedure simi-
larity, with the addition of a rewrite engine. This approach
was shown to be less accurate than semantic approaches
[18]. However, the use of a highly semantic biased approach
is in itself problematic, resulting infeasible run-time, making
the approach inapplicable to the large scale firmware search
scenario. Expose [26] attempts to apply a balanced approach
over semantics and syntax, using symbolic execution as well
as syntactic heuristics. While this compromise shows poten-
tial, accuracy is poor, although this can also be attributed to
the procedure-centric nature of the approach.

The authors of [28] use expression trees as procedure
signatures, but this approach is susceptible to the problem
of varying compilation tool-chains as different compilers
perform the same calculation differently.
The authors of [27] present an approach which samples

VEX-IR lifted and simplified (using theorem-provers) basic-
blocks. To avoid over-matching, this work uses a sampling-
based approach to accompany the simplified expressions.
This approach suffers from lower precision and recall than
FirmUp. We attribute this to the spurious matches that result
from common computations shared among non-similar code.
These events were observed in our experiments, leading us
to employ a statistical framework instead. Also note that our
approach is purely static.
The authors of [22] leverage the (static) CFG of the pro-

cedure for similarity, while applying a dynamic filtering
beforehand to scale. Their results show that the CFG in not
a precise enough feature for similarity, leading to false posi-
tives.
Dynamic approaches Blanket execution [20] is a technique
for producing procedure signatures by collecting run time
side-effects of the procedure on the environment. This results
in sub-optimal accuracy; applying a dynamic approach is
moreover problematic in the embedded scenario because
acquiring a proper running environment is nontrivial, and
may expose the analyzing party to unnecessary risk.

7 Conclusion
We present a static precise and scalable technique for finding
CVEs in stripped firmware images. When dealing with CVEs
in firmware, the common approach of creating a procedure-
centric signature (e.g., [17–19, 23, 27]) yields poor precision
because it fails to leverage other information present in the
binary. The other commonly used approach of comparing
full binaries ([8]) also falls short due to the customization of
firmware images and call-graph variance.

Our middle ground technique establishes correspondence
between sets of procedures in a given query binary and target
binary. We show that the pairwise similarity of procedures
cannot be lifted directly to establish this correspondence. We
therefore introduce a back-and-forth game to lift the pairwise
similarity between procedures to similarity between sets of
procedures.

We implemented our technique and extensively evaluated
it over millions of procedures from public vendor firmware
images. We discovered 373 vulnerabilities in publicly avail-
able firmware, 147 of which appear in the latest available
firmware version for the device. We further compared our
approach to previous methods and show that we are able
to accurately find vulnerabilities in firmware, while outper-
forming the detection rate of the state of the art by 45% on
average.

Session 4B: Program Analysis ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

403

Acknowledgments
We would like to thank Santosh Pande, for helping us im-
prove and clarify the paper throughout the shepherding pro-
cess. Our thanks also goes out to Omer Katz for his through
feedback for this work, as well as the anonymous referees
for their comments and suggestions. The research leading
to these results has received funding from the European
Union’s Seventh Framework Programme (FP7) under grant
agreement no. 615688 - ERC-COG-PRIME and the Israel Min-
istry of Science and Technology, grant no. 3-9779.

References
[1] [n. d.]. ASUS Firmware Resources. https://www.asus.com/support/.
[2] [n. d.]. Capstone Disassembler. www.capstone-engine.org/.
[3] [n. d.]. curl releases. https://curl.haxx.se/docs/releases.html.
[4] [n. d.]. D-Link Firmware Resources. http://support.dlink.com/.
[5] [n. d.]. Firmware Analysis. https://github.com/devttys0/binwalk
[6] [n. d.]. Hex-Rays IDAPRO. http://www.hex-rays.com.
[7] [n. d.]. Netgear Firmware Resources. downloadcenter.NETGEAR.com/.
[8] [n. d.]. zynamics BinDiff. http://www.zynamics.com/bindiff.html.
[9] [n. d.]. zynamics BinDiff Manual. http://www.zynamics.com/bindiff/

manual/index.html.
[10] 2016. Dyn cyberattack. https://en.wikipedia.org/wiki/2016_Dyn_

cyberattack.
[11] 2016. Muddy Waters Hedge Fund Claims Device Maker

Vulnerable to Hackers. https://www.ft.com/content/
bfde006a-6b0d-11e6-ae5b-a7cc5dd5a28c?mhq5j=e3.

[12] 2016. Updates and more on the Netgear router vulnerability. http:
//www.computerworld.com/article/3151097.

[13] 2017. Gartner: 8.4 Billion Connected "Things" Will Be in Use in 2017.
http://www.gartner.com/newsroom/id/3598917.

[14] 2017. Over 8,600 Vulnerabilities Found in Pacemakers - The
Hacker News. (2017). http://thehackernews.com/2017/06/
pacemaker-vulnerability.html.

[15] Preston Briggs, Keith D. Cooper, and L. Taylor Simpson. 1997. Value
Numbering. Software: Practice and Experience 27, 6 (June 1997),
701–724. https://doi.org/10.1002/(SICI)1097-024X(199706)27:6<701::
AID-SPE104>3.3.CO;2-S

[16] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide
Balzarotti. 2014. A Large-scale Analysis of the Security of Embedded
Firmwares. In Proceedings of the 23rd USENIX Conference on Security
Symposium (SEC’14). USENIX Association, Berkeley, CA, USA, 95–110.

[17] Y. David, N. Partush, and E. Yahav. 2016. Statistical similarity of
binaries. In Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), Vol. 13-17-June.
https://doi.org/10.1145/2908080.2908126

[18] Yaniv David, Nimrod Partush, and Eran Yahav. 2017. Similarity of
binaries through re-optimization. In Proceedings of the 38th ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation - PLDI 2017. ACM Press, New York, New York, USA, 79–94.
https://doi.org/10.1145/3062341.3062387

[19] Yaniv David and Eran Yahav. 2014. Tracelet-based Code Search in
Executables. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’14). ACM,
New York, NY, USA, 349–360. https://doi.org/10.1145/2594291.2594343

[20] Manuel Egele, Maverick Woo, Peter Chapman, and David Brum-
ley. 2014. Blanket Execution: Dynamic Similarity Testing for
Program Binaries and Components. In Proceedings of the 23rd
USENIX Security Symposium, San Diego, CA, USA, August 20-22.
303–317. https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/egele

[21] Andrzej Ehrenfeucht. 1961. An application of games to the complete-
ness problem for formalized theories. Fundamenta Mathematicae 49, 2
(1961), 129–141. http://eudml.org/doc/213582

[22] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla.
2016. discovRE: Efficient Cross-Architecture Identification of Bugs in
Binary Code. In 23nd Annual Network and Distributed System Security
Symposium, NDSS 2016, San Diego, California, USA, February 21-24,
2016.

[23] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa,
and Heng Yin. 2016. Scalable Graph-based Bug Search for Firmware
Images. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28, 2016. 480–
491. https://doi.org/10.1145/2976749.2978370

[24] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa,
and Heng Yin. 2016. Scalable Graph-based Bug Search for Firmware
Images. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’16). ACM, New York, NY, USA,
480–491. https://doi.org/10.1145/2976749.2978370

[25] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In PLDI. 89–100.

[26] Beng Heng Ng and A. Prakash. 2013. Expose: Discovering Potential
Binary Code Re-use. In IEEE 37th Annual, Computer Software and
Applications Conference (COMPSAC), 2013. 492–501. https://doi.org/
10.1109/COMPSAC.2013.83

[27] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow,
and Thorsten Holz. 2015. Cross-Architecture Bug Search in Binary
Executables. In 2015 IEEE Symposium on Security and Privacy, SP 2015,
San Jose, CA, USA, May 17-21, 2015. 709–724. https://doi.org/10.1109/
SP.2015.49

[28] Jannik Pewny, Felix Schuster, Lukas Bernhard, Thorsten Holz, and
Christian Rossow. 2014. Leveraging Semantic Signatures for Bug
Search in Binary Programs. In Proceedings of the 30th Annual Computer
Security Applications Conference (ACSAC ’14). ACM, New York, NY,
USA, 406–415.

[29] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, and Giovanni Vigna. 2016. SoK: (State
of) The Art of War: Offensive Techniques in Binary Analysis. (2016).

[30] Mark Weiser. 1984. Program Slicing. IEEE Transactions on Software
Engineering SE-10, 4 (jul 1984), 352–357. https://doi.org/10.1109/TSE.
1984.5010248

Session 4B: Program Analysis ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

404

https://www.asus.com/support/
www.capstone-engine.org/
https://curl.haxx.se/docs/releases.html
http://support.dlink.com/
https://github.com/devttys0/binwalk
http://www.hex-rays.com
downloadcenter.NETGEAR.com/
http://www.zynamics.com/bindiff.html
http://www.zynamics.com/bindiff/manual/index.html
http://www.zynamics.com/bindiff/manual/index.html
https://en.wikipedia.org/wiki/2016_Dyn_cyberattack
https://en.wikipedia.org/wiki/2016_Dyn_cyberattack
https://www.ft.com/content/bfde006a-6b0d-11e6-ae5b-a7cc5dd5a28c?mhq5j=e3
https://www.ft.com/content/bfde006a-6b0d-11e6-ae5b-a7cc5dd5a28c?mhq5j=e3
http://www.computerworld.com/article/3151097
http://www.computerworld.com/article/3151097
http://www.gartner.com/newsroom/id/3598917
http://thehackernews.com/2017/06/pacemaker-vulnerability.html
http://thehackernews.com/2017/06/pacemaker-vulnerability.html
https://doi.org/10.1002/(SICI)1097-024X(199706)27:6<701::AID-SPE104>3.3.CO;2-S
https://doi.org/10.1002/(SICI)1097-024X(199706)27:6<701::AID-SPE104>3.3.CO;2-S
https://doi.org/10.1145/2908080.2908126
https://doi.org/10.1145/3062341.3062387
https://doi.org/10.1145/2594291.2594343
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/egele
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/egele
http://eudml.org/doc/213582
https://doi.org/10.1145/2976749.2978370
https://doi.org/10.1145/2976749.2978370
https://doi.org/10.1109/COMPSAC.2013.83
https://doi.org/10.1109/COMPSAC.2013.83
https://doi.org/10.1109/SP.2015.49
https://doi.org/10.1109/SP.2015.49
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1109/TSE.1984.5010248

	Abstract
	1 Introduction
	1.1 Our Approach

	2 Overview
	2.1 Pairwise Procedure Similarity
	2.2 Efficient Partial Executable Matching

	3 Representing Firmware Binaries
	3.1 Binary Lifting
	3.2 Procedure Decomposition
	3.3 Pairwise Procedure Similarity

	4 Binary Similarity as a Back-and-Forth Game
	4.1 Game Motivation
	4.2 Game Algorithm
	4.3 Graph-based Approaches

	5 Evaluation
	5.1 Corpus Creation
	5.2 Finding Undiscovered CVEs in Firmware
	5.3 Evaluating Precision Against Previous Work

	6 Related Work
	7 Conclusion
	References

