
FirmUp: Precise Static Detection of
Common Vulnerabilities in Firmware

Yaniv David, Nimrod Partush, Eran Yahav @ Technion

*The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7)
under grant agreement no. 615688 - ERC-COG-PRIME and the Israel Ministry of Science and Technology, grant no. 3-9779.

Motivation

2

Open Source Is Everywhere

3

894 1020
1677

2156
1527

2451

4935

6610 6520
5632 5736

4652
4155

5297 5191

7946

6480 6447

14712

0

2000

4000

6000

8000

10000

12000

14000

16000

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Vu

ln
er

ab
ili

tie
s p

er
 y

ea
r

Open Source Vulnerabilities on the Rise

Tim
CSO@Company

https://www.cvedetails.com/browse-by-date.php

YOU

4

Finding a known vulnerability in a Firmware

ftp_retrieve_glob()Query - vulnerable procedure:

wget

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4877 5

Finding a known vulnerability in a Firmware

ftp_retrieve_glob()Query - vulnerable procedure:

Target
Firmware:

6

Challenge: Code Is Syntactically Different

addiu a2, sp, 0x20
move s4, a1
jal 0x40B2AC
move s5, a0
li v1, 0x1F
beq v0, v1, 0x40B518
lui s6, 0x47

jalr t9
move s2, a0
move s5, v0
li v0, 0x1F
lw gp, 0x28+sp
bne s5, v0, 0x40E744
move v0, s5

NETGEAR product
firmwaregcc v5.2 –O2

7

Challenge: Control-Flow-Graph Will Not Help

Query CFG: Target CFG:

8

Finding a known vulnerability in a Firmware

ftp_retrieve_glob()Query - vulnerable procedure:

sub_443e2()Target
Firmware:

Best Match ?

9

Procedure–Centric Search Misses

ftp_retrieve_glob()

sub_443ee2()

get_ftp()

url_parse()

skey_resp()

sub_491b00()
sub_4ea884()

𝑆𝑖𝑚 = 71𝑆𝑖𝑚 = 53

Best match relation – is not symmetric
10

Using Executable–Centric Search

ftp_retrieve_glob()

sub_443ee2()

get_ftp()
url_parse()

skey_resp()

sub_491b00()

sub_4ea884()

𝑆𝑖𝑚 = 44 𝑆𝑖𝑚 = 71 𝑆𝑖𝑚 = 51

11

Challenge: Procedure Structure Will Not Help

ftp_retrieve_glob()

Query Call-Graph Target Call-Graph

ftp_retrieve_glob()

12

Finding Vulnerabilities

• Precise - avoid false positives
• Flexible – find similarities even when using:
• Various CPU Architectures (ISA differs syntactically)

• Custom tool-chains (Compiler vendors, -O123s)
• Scalable – fast enough to work in our scenario
• Only the minimal partial-matching is calculated

13

Our Approach
I want to play a game

14

The Rules of the Game
• The game is played by a player and a rival

• Player needs to create a partial matching
• Must contain 𝑞! - the vulnerable procedure

• Rival tries to find inconsistencies in player’s matches
• “skipping” a best match allowed only by expanding the

partial-match

15

The Rules of the Game (2)
• Player wins the game by finding a consistent match
• Rival wins when player gives up (or by timeout / too

many game steps)

• This is a two-player game in the formal sense
• Here we only provide some intuition
• Full details in the paper

16

Game: Find Match for 𝑞!

𝑞!

𝑄: Query Executable 𝑇: Target Executable

𝑡"

Tim thinks this is best
match in 𝑇

𝑞!

To Match

Stack of
procedures

to match

Matches

𝑞! ⟷ 𝑡"

17

𝑞! 𝑡"

𝑞"

Rival found a conflict

𝑞!

𝑡"

𝑞"

To Match Matches

𝑞! ⟷ 𝑡"𝑞! ⟷ 𝑡"

18

Game: Reverse Search by Rival

𝑞! 𝑡"

𝑞"

𝑞!

𝑡"

𝑞"

To Match Matches

𝑡%

19

Game: Explain the Skip

𝑞! 𝑡"

𝑞"

𝑞!

𝑡"

𝑞"

To Match Matches

𝑡%

𝑞" ⟷ 𝑡#

20

Game: First Match

𝑞! 𝑡"

𝑞"

𝑞!

𝑡"

To Match Matches

𝑡%

𝑞$ ⟷ 𝑡%
𝑞%

21

Game: Working Up the Stack

22

Game: Three Steps Forward

𝑞! 𝑡"

𝑞"

𝑞!

To Match Matches

𝑡%

𝑞" ⟷ 𝑡#

𝑞%𝑞# ⟷ 𝑡"
𝑡&

23

Game: Getting Back To 𝑞!

𝑞! 𝑡"

𝑞"

𝑞!

To Match Matches

𝑡%

𝑞" ⟷ 𝑡#

𝑞%
𝑞# ⟷ 𝑡"

𝑡&

24

Partial matching
provides confidence

Game: Partial Match Found

A full match is too
expensive

Evaluation
Prototype of our approach - FirmUp

25

Evaluation

● Corpus
● ∼5000 Firmware images crawled from public repositories
● , ,

● ∼2000 contained relevant executables (Arch + OS)
● 32bit Architectures:

● Total of ∼200,000 executables

● Containing ∼40,000,000 procedures

● Queries - 7 real world public vulnerabilities (CVE) from diverse types
● DOS, BOF, input validation, information disclosure, and path traversal

26

Finding Vulnerabilities Using FirmUp

CVE Package Procedure Confirmed FPs Affected Vendors Latest Time

1 2011-0762 vsftpd vsf_filename_passes_filter 76 0 ASUS,NETGEAR 29 2m

2 2009-4593 bftpd bftpdutmp_log 63 0 NETGEAR 15 4m

3 2012-0036 libcurl curl_easy_unescape 1 0 NETGEAR 0 12s

4 2013-1944 libcurl tailmatch 5 0 ASUS,D-Link 2 1m

5 2013-2168 dbus printf_string_upper_bound 10 0 D-Link, NETGEAR 5 7m

6 2014-4877 wget ftp_retrieve_glob 69 14 ASUS, NETGEAR 35 18m

7 2016-8618 libcurl alloc_addbyter 149 0 ASUS,D-Link, NETGEAR 61 25m

373 confirmed vulnerabilities, 147 in the latest available Firmware

27

New versions => new procedures =>
symmetry is broken

20.9

12.7

7.6

5.6

3.2
2.0

0.0

5.0

10.0

15.0

20.0

25.0

1 2 3-4 5-8 9-16 17-32

%
 F

as
lse

 P
os

iti
ve

s

Game Steps Used

The Importance of the Game

28

Wait, Where Are the False-Negatives?
● Data from the “wild” is not labeled => no false-negatives

● To save space debug information is stripped in firmware build

● Some non-stripped executables existed in corpus
● Usually found in early versions of firmware (maybe for debugging)

● Library procedure names cannot be stripped (importing/calling by name)

● Extended experiment by Including two more CVEs

29

0 50 100 150 200 250

exif_entry_get_value
curl_easy_unescape

bftpdutmp_log_0
snmp_pdu_parse

vsf_filename_filter
ftp_retrieve_glob

alloc_addbyter
dbus_printf

tailmatch

050100150200250

GitZ Vs FirmUp

GitZ encountered 34% false positives
compared with 9.88% for FirmUp

30

0 50 100 150 200 250

exif_entry_get_value
curl_easy_unescape

bftpdutmp_log_0
snmp_pdu_parse

vsf_filename_filter
ftp_retrieve_glob

alloc_addbyter
dbus_printf
tailmatch

F P

FirmUpGitZ

GitZ [PLDI17] - our previous work, procedure-centric similarity search

BinDiff Vs FirmUp

010203040506070 0 10 20 30 40 50 60 70

vsf_filename_filter

ftp_retrieve_glob

alloc_addbyter

dbus_printf

tailmatch

31

BinDiff encountered over 69.3% false results overall
compared with 6% for FirmUp

0 10 20 30 40 50 60 70

vsf_filename_filter

ftp_retrieve_glob

alloc_addbyter

dbus_printf

tailmatch

FP FN P

FirmUpBinDiff

BinDiff - Industry standard tool (recently made free)

Similar Structure ≠ Similar Semantics

Bad Match
Bindiff

Right Match
FirmUp

32

Query Target #2Target #1

Summary

• Procedure-centric search is lacking
• shown in comparison to GitZ

• Executable-centric search uses available
information to improve search

• Full-equivalence is expensive, game-inspired
partial equivalence instead

• Evaluated on data from the “wild” : 373 confirmed
vulnerabilities, 147 in the latest available firmware

33

Questions?

34

