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ABSTRACT

Determining whether multiple instructions can access the same
memory location is a critical task in binary analysis. It is challeng-
ing as statically computing precise alias information is undecidable
in theory. The problem aggravates at the binary level due to the
presence of compiler optimizations and the absence of symbols and
types. Existing approaches either produce significant spurious de-
pendencies due to conservative analysis or scale poorly to complex
binaries.

We present a new machine-learning-based approach to predict
memory dependencies by exploiting the model’s learned knowl-
edge about how binary programs execute. Our approach features
(i) a self-supervised procedure that pretrains a neural net to reason
over binary code and its dynamic value flows through memory ad-
dresses, followed by (ii) supervised finetuning to infer the memory
dependencies statically. To facilitate efficient learning, we develop
dedicated neural architectures to encode the heterogeneous inputs
(i.e., code, data values, and memory addresses from traces) with spe-
cific modules and fuse them with a composition learning strategy.

We implement our approach in NeuDep and evaluate it on 41
popular software projects compiled by 2 compilers, 4 optimizations,
and 4 obfuscation passes. We demonstrate that NeuDep is more
precise (1.5×) and faster (3.5×) than the current state-of-the-art.
Extensive probing studies on security-critical reverse engineering
tasks suggest that NeuDep understands memory access patterns,
learns function signatures, and is able to match indirect calls. All
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these tasks either assist or benefit from inferringmemory dependen-
cies. Notably, NeuDep also outperforms the current state-of-the-art
on these tasks.
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1 INTRODUCTION

Binary memory dependence analysis, which determines whether
twomachine instructions in an executable can access the samemem-
ory location, is critical for many security-sensitive tasks, including
detecting vulnerabilities [18, 36, 86], analyzing malware [38, 93],
hardening binaries [4, 29, 44, 90], and forensics [19, 35, 58, 91].
The key challenge behind memory dependence analysis is that ma-
chine instructions often leverage indirect addressing or indirect
control-flow transfer (i.e., involving dynamically computed targets)
to access the memory. Furthermore, most commercial software is
stripped of source-level information such as variables, arguments,
types, data structures, etc. Without this information, the problem
of memory dependence analysis becomes even harder, forcing the
analysis to reason about values flowing through generic registers
and memory addresses. Consider the following code snippet where
we show two instructions (within the same function) at different
program locations. The function is executed twice, resulting in two
different traces.
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Address Instruction Trace 1 Trace 2

......
0x06: mov [rax],rbx∗ rax=0x3;rbx=0x1 rax=0x5;rbx=0x1

......
0x1f: mov rdi,[0x3] rdi=0x1 rdi=0x0

......
∗In Intel x86 syntax [77], mov [rax],rbx means writing register rbx to the memory
pointed by register rax; [] means dereference a memory address.

The two instructions are memory-dependent (read-after-write)
when rax=0x3 (Trace 1). When analyzing the code statically, it
requires precise value flow analysis to determine what values can
flow to rax from different program contexts.

Over the last two decades, researchers have made numerous at-
tempts to improve the accuracy and performance of binary memory
dependence analysis [5, 6, 11, 16, 22, 34, 71]. The most common
approach often involves statically computing and propagating an
over-approximated set of values that each register and memory
address can contain at each program point using abstract interpre-
tation. For example, a seminal paper by Balakrishnan and Reps on
value set analysis (VSA) [5] adopts strided intervals as the abstract
domain and propagates the interval bounds for the operands (e.g.,
registers andmemory locations) along each instruction. VSA detects
two instructions to be dependent if their intervals intersect. Un-
fortunately, these static approaches have been shown to be highly
imprecise in practice [96]. Composing abstract domains along mul-
tiple instructions and merging them across a large number of paths
quickly accumulate prohibitive amounts of over-approximation er-
ror. As a result, the computed set of accessed memory addresses by
such approaches often ends up covering almost the entire memory
space, leading to a large number of false positives (i.e., instructions
with no dependencies are incorrectly detected as dependent).

With the advent of data-driven approaches to program analy-
ses [3, 69, 89], state-of-the-art memory dependence analysis is in-
creasingly using statistical or machine learning (ML) based methods
to improve the analysis precision [35, 58, 87, 96], but they still suffer
from serious limitations. For example, DeepVSA [35] trains a neural
network on static code to classify the memory locations accessed by
each instruction into a more coarse-grained abstract domain such
as stack, heap, and global, and use the predicted memory region
to instantiate the value set in VSA. However, such coarse-grained
prediction results in high false positives as any two instructions
accessing the same region (e.g., stack) will always be detected as de-
pendent even when the instructions access two completely different
addresses. To avoid the precision losses by the static approaches,
BDA [96] uses a dynamic approach that leverages probabilistic
analysis to sample program paths and performs per-path abstract
interpretation. However, as real-world programs often have many
paths, the cost of performing per-path abstract interpretation for
even a smaller subset of paths adds prohibitive runtime overhead,
e.g., taking more than 12 hours to finish analyzing a single pro-
gram. It is perhaps not surprising—while a dynamic approach can
be more accurate than static approaches, it can incur extremely
high runtime overhead, especially while trying to achieve good
code coverage.

To achieve higher accuracy in a reasonably faster time, we pro-
pose an ML-based hybrid approach. Our key strategy is to learn to
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Figure 1: The workflow of our approach.We first pretrain the

model to predict code based on its traces and predict traces

based on its code. We then finetune the model to statically

infer memory dependencies.

reason about approximate memory dependencies from the execu-
tion behavior of generic binary code during training. We then apply
the learned knowledge to static code during inference without any
extra runtime overhead (see Figure 1). Such a hybrid approach, i.e.,
learning from both code and traces, has been shown promise in sev-
eral Software Engineering applications, including clone detection,
type inference, and program fixing and synthesis [60, 63, 64, 89].
However, none of these works can reason fine-grained value flows
through different memory addresses as they do not explicitly model
memory. To bridge this gap, we aim to model the memory addresses
in the ML-based hybrid framework and try to make fine-grained
predictions differentiating the memory contents of different data
pointers. Modeling memory address is, however, challenging as
it requires the model to (i) distinguish between different memory
addresses, (ii) learn to reason about indirect address references
and memory contents, and (iii) learn the compositional effects of
multiple instructions that involve memory operations.

To this end, we propose a new learning framework compris-
ing pretraining and finetuning steps inspired by masked language
model (MLM) [25], as shown in Figure 1. Unlike traditional MLM,
where the input is restricted to a single input modality (e.g., text),
our model learns from multi-modal information: instructions (static
code), traces (dynamic values), and memory addresses (code spatial
layout). We deploy a novel fusion module to simultaneously capture
the interactions of these modalities for predicting memory depen-
dencies. During pretraining, we mask random tokens from these
modalities. While predicting masked opcode teaches the model to
synthesize the instruction, predicting masked values in traces and
memory addresses forces the model to learn to interpret instructions
and their effect on registers and memory contents. For instance, if
we mask the value of rax in mov [rax],rbx in the above example
and train the model to predict it, the model is forced to interpret
the previous instructions in the context and reason about how they
compute their trace values that flow into rax. We hypothesize that
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such pretraining helps the model gain a general understanding of
the value flow behavior involving memory operations.

After pretraining, the model is finetuned to statically (without
the trace values) reason about the value flows (based on its learned
knowledge from pretraining) across memory along multiple paths
and predict the memory-dependent instruction pairs. Both pretrain-
ing and finetuning steps are automated and data-driven without
manually defining any propagation rules for value flows. As a re-
sult, we show that our model is faster and more precise than the
state-of-the-art systems (§5).

We implement our approach in NeuDep by carefully designing
a new neural architecture specialized for fine-grained modeling of
pointers to distinguish between unique memory addresses (Chal-
lenge i). We develop a novel fusion module to facilitate efficient
training on the multi-modal bi-directional masking task, which
helps the model to understand memory address content and thus,
indirect memory references (Challenge ii). Finally, to teach the com-
positional effects of instructions on memory values (Challenge iii),
we leverage the principle of curriculum learning [8], i.e., expose
short training examples in the initial learning phase, and gradually
increase the sample difficulties as the training progresses.

We evaluate NeuDep on a wide range of popular software
projects compiled with diverse optimizations and obfuscation
passes. We demonstrate that NeuDep is more precise than state-
of-the-art binary dependence analysis approaches, widely-used re-
verse engineering frameworks, and even a source-level pointer anal-
ysis tool that has access to much richer program properties. We also
show that NeuDep generalizes to unseen binaries, optimizations,
and obfuscations, and is drastically faster than existing approaches.
We perform extensive ablation studies to justify our design choices
over other alternatives studied in previous works [64, 66]. Moreover,
NeuDep is surprisingly accurate at many additional security-critical
reverse engineering tasks, which either support or benefit from
inferring memory dependencies, such as predicting memory-access
regions, function signatures, and indirect procedure calls – NeuDep
also outperforms the state-of-the-arts on all these tasks.

We make the following contributions:
(1) We propose a new neural architecture that can jointly learn

memory value flows from code and the corresponding traces
for predicting binary memory dependencies.

(2) We implement our approach in NeuDep that contains a dedi-
cated fusion module for learning encodings of memory address-
es/trace values, and a composition learning strategy.

(3) Our experimental results demonstrate that NeuDep is (3.5×)
faster and more accurate (1.5×) than the state-of-the-art.

(4) Our extensive ablation studies and analysis on downstream
tasks suggest that our pretraining substantially improves the
prediction performance and helps the model to learn value flow
through different instructions.

2 OVERVIEW

2.1 Motivating Example

Figure 2 shows that two instructions 𝐼2: mov rdi,[rax+0x8] and
𝐼7: mov [rbp+rbx],rdi access the same memory location (and are
thus memory-dependent) but via different addressing registers. To
detect the dependency, the model needs to first understand that

I1  mov rax,0x1234

I2  mov rdi,[rax+0x8]

I3  mov rdx,[rip+0xbf]

I4  mov rbx,0x1234

I5  xor rbp,rbp

I6  add rbp,0x8

I7  mov [rbp+rbx],rdi

I8  mov [rip+0x81],rax

Instructions I

NeuDepExisting ML Models

Stack

Memory Layout

Heap

Global1

Global2



......


Execution Trace
I1 rax=0x1234

I2 rdi=[0x123c]

I3 rdx=[rip+0xbf]

I4 rbx=0x1234

I5 rbp=0x0

I6 rbp=0x8

I7 [0x123c]=rdi

I8 [rip+0x81]=rax

rip+0xbf

rip+0x81

0x123c

Ground Truth

......


Figure 2: Motivating example of predicting memory de-

pendencies in the function ngx_init_setproctitle from

nginx-1.21.1. 𝐼2 and 𝐼7 access the same heap variable (in

blue ); 𝐼3 and 𝐼8 access different global variables (in red ).

We find that existing ML-based approaches (learned on static

code only) fail to detect 𝐼2 and 𝐼7 are dependent by predicting

they access to different memory regions and cannot distin-

guish the memory accessed by 𝐼3 and 𝐼8 due to the prediction

granularity.

the behavior of mov: both line 1 (𝐼1) and line 4 (𝐼4) set rax and rbx
to the same value. It then needs to understand xor in line 5 sets
rbp to 0, and add in line 6 performs addition and sets rbp to 0x8.
Finally, the model needs to compose these facts and concludes that
rax+0x8 is semantically equivalent to rbp+rbx in such a context,
i.e., they both evaluate to 0x123c.
Gap in Existing Solutions. We find that when running the ML
model trained only on static code for this task [35], it mispredicts
that 𝐼2 and 𝐼7 are not dependent as their memory-access regions (𝐼2
accesses heap while 𝐼7 is mispredicted to access stack) do not inter-
sect, possibly because its inference depends on the spurious pattern
that the stack base pointer rbp is used at line 7. Such mispredic-
tions [35] might lead to a false negative by flagging two instructions
as accessing non-overlapping memory regions.
Proposed Solution. The above observation underscores the impor-
tance of encoding the knowledge about each instruction’s contri-
bution to value flows through memory and their compositions as
part of the ML model. However, integrating a memory model as
part of the encoded knowledge is challenging due to the presence
of potentially complex flows involving indirect address references
and their compositions. We address these challenges by designing

(1) A novel training objectives to distinguish between unique mem-
ory addresses (§2.2)

(2) A dedicated fusion module sepcialized to capture the interaction
between instruction, trace, and memory addresses (§2.3.2). Our
new tracing and sampling strategies (§2.3.1) help the ML model
to learn value flows across memory addresses.

(3) Curriculum learning [8] in the training process to incrementally
learn the compositional effects (§2.3.3).

Table 1 shows some examples of how the pretraining task works
and how it teaches the model to reason about value flows.
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Table 1: Examples of masking (in grey ) instructions and traces (represented as input (In) and output (Out) of each instruction).

The model has to dereference the memory content and interpret or synthesize instruction(s) to infer the masked parts. We

include the actual operations performed by the instructions (noted in green) and the formal semantics that themodel essentially

needs to learn for each example (last column).

Example Descriptions Instruction(s) Trace Underlying
Mnemonic Operand In Out Semantics

Example 1: Interpreting memory operands in bitwise operations rax=rax⊕[rbx] 𝑣1 = 0x2, 𝑣2 = 0x7
𝑣 = 𝑣1 ⊕ 𝑣2

𝑣 = 0x5
Let the output value of rax in xor rax,[rbx] be masked. To predict the masked value (i.e., rax=0x5), the model
needs to understand the semantics of xor on its inputs rax=0x2 and [rbx]=0x7. xor

rax
[rbx]

0x2
0x7

0x5

0x7

Example 2: Synthesizing Arithmetic Operations with memory operands rbp=rbp+[rdi] 𝑣1 =0x4, 𝑣2 =0x8
𝑣 = 𝑣1^𝑣2, 𝑣 =0xc

^ = add
Let add be masked in add rbp,[rdi]. To predict the masked add (e.g., out of sub, mov, etc.), the model needs to
associate add to the behavior that increments the its first operand by that of its second operand. add

rbp
[rdi]

0x4
0x8

0xc
0x8

Example 3: Reverse Interpreting Arithmetic Operations with memory operands rcx=rcx-[rdx] 𝑣2 = 0x1, 𝑣 = 0x8
𝑣 = 𝑣1 − 𝑣2

𝑣1 = 0x9
Let the input value of rcx in sub rcx,[rdx] be masked. To predict the masked value, the model needs to
interpret sub backward given its output 0x8 and the value of its second operand 0x1 stored on memory. sub

rcx
[rdx]

0x9

0x1

0x8
0x1

Example 4: Interpreting Compositions of Multiple Memory Operations

rsp=rsp-0x8
[rsp]=rdi
rsi=[rsp]

More than one instructions are executing. Let the output value of rsi in push rdi;mov rsi,[rsp] be masked.
To predict the masked value, the model needs to first interpret push and understand its side effect: decrements
the stack pointer rsp by 8 bytes and store the value of rdi (0x6) on stack referenced by rsp.

push
rdi
rsp

0x6
0x8

0x6
0x0

𝑣1 = 𝑣1 − 0x8
[𝑣1 ] = 0x6
𝑣2 = [𝑣1 ]
𝑣2 = 0x6

The model then needs to first dereference the indirect addressing of [rsp] to infer 0x6 is stored at rsp (0x0). It
then needs to interpret mov and understand it assigns the value from its second operand to the first operand to
infer the masked value to be 0x6.

mov
rsi

[rsp]
0x0
0x0

0x6

0x0

2.2 Problem Formulation

Let 𝑓 denote an ML model parameterized by 𝜃 . Before directly
training 𝑓 towards predicting memory dependencies, we pretrain 𝑓

to reason about the value flows (see §3.4 for details). Now consider
𝑓 with pretrained parameters 𝜃 , we formalize the task of analyzing
memory dependencies as follows.
Definition 2.1 (Memory Dependency Prediction). Given a pair
of assembly code instructions {𝐼𝑖 , 𝐼 𝑗 } within a code block 𝐼 con-
sisting of 𝑛 assembly instructions: (𝐼1, ..., 𝐼𝑛), our neural memory
dependency predictor 𝑓 , parameterized by the pretrained weight 𝜃 ,
predicts whether the instruction pair can access the same memory
location, i.e., 𝑦 = 𝑓 (𝐼𝑖 , 𝐼 𝑗 , 𝐼 ;𝜃 ), 𝑦 ∈ [0, 1]. 𝑦 = 0 denotes {𝐼𝑖 , 𝐼 𝑗 } do
not have memory dependency, and 𝑦 = 1 denotes dependent.

Any 𝑦 between 0 and 1 denotes the probability of 𝐼𝑖 and 𝐼 𝑗 being
dependent. Figure 2 shows an example how our model predicts
different instruction pairs. We elaborate on how our neural archi-
tecture implements 𝑓 in the above definition in §3.5.

2.3 NeuDep’s Design

Training the model to learn value flows for memory dependence
analysis opens up several interesting design spaces, ranging from
tracing to introduce diverse behaviors to designing appropriate
inductive biases in the model architecture and training strategies.
We overview our design in the following and provide detailed de-
scriptions in §3.

2.3.1 Trace Collection. Pretraining requires high-quality training
data to expose diverse program execution. We implement a forced
execution engine [30, 67] to execute individual functions with full
path coverage without the reliance on program test cases. Our
execution engine differs from the existing works in two key aspects.

First, we note that existing works [28, 66, 67] implement the
forced execution by violating the control flow semantics, i.e., step-
ping through control transfer instructions, to obtain traces with
high coverage. However, this introduces noisy traces as they are
not realizable in practice. On the contrary, respecting control trans-
fers [64] will inevitably suffer from the coverage problem, as they
have to find test cases to cover different paths [12, 20, 59]. To cir-
cumvent this problem, we implement a coverage-guided semantic-
preserving branch-flipping mechanism to expose diverse paths
within the function without breaking the branching instructions’
semantics (§3.1).

Second, existing works do not trace behaviors of the external
procedure calls [64, 66], but this is especially important to model
memory operations as heap allocation is often performed via li-
brary calls (e.g., via malloc). Our tracing engine provides complete
environment support by pre-loading the whole program and its
dependent libraries. The side effect of all function call instructions
can thus be traced and logged as their input-output behavior (§3.1).

2.3.2 Representing and Fusing Code, Trace, and Memory. Assembly
instructions and their traces are highly heterogeneous, i.e., instruc-
tion consists of discrete tokens like mnemonics and operands, while
trace consists of mostly continuous values. To better encode the
nature of each sequence, we employ two distinct modules to learn
on these two inputs and then fuse them to make the joint inference.
Specifically, we learn the instruction sequence with self-attention
layers [83] to encode the instructions grounded on their neighbor-
ing context. We learn the trace values by a per-byte convolution
network. After learning a basic representation of the code and trace
values, we employ a fusion module (§3.3) to augment the contextu-
alized instruction embeddings with the trace value embeddings.

We represent the code address space during execution as an ad-
ditional input aligned to the instructions. This helps the model stay
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aware of the instructions’ order to their execution effect. Moreover,
we observe that rip-relative addressing is frequently used to access
global variables in position-independent code. Therefore, feeding
addresses can help the model to learn the semantics of memory
addressing. For example, consider the following instructions from
the function quotearg_free in runcon from Coreutils-8.30.
0x449c: cmp [rip+0x4d65],2 # rip+0x4d65=0x9208
......
0x44bc: movsxd rax,[rip+0x4d45] # rip+0x4d45=0x9208
......
0x450e: mov [rip+0x4cf0],1 # rip+0x4cf0=0x9208

Three instructions use rip with different offsets to access the same
global variable stored at 0x9208. By encoding the address of each
instruction, we help the model infer the value of rip and thus assist
reasoning of the memory dependencies.

2.3.3 Training Design (Composition Learning). Inspired by how
humans learn, we aim to develop a strategy that trains the model to
gradually build up its knowledge. Ideally, the model should start by
learning easy samples and then generalize its learned knowledge by
getting exposed to more challenging training samples. As demon-
strated in Table 1, the training samples with more instructions are
more challenging to predict than those with fewer instructions, as
the model has to learn the compositional execution effect of multiple
instructions. Moreover, the more masks applied, the less context
the model can leverage to make the prediction, thus increasing
difficulty. Therefore, we develop a curriculum learning strategy [8]
by sorting the training samples based on their length and increasing
the masking rate at each training epoch. As a result, the model al-
ways starts learning from short code pieces with fewer masks at the
early batches within each epoch, and the length of the code piece
and the number of masks applied are increased in later epochs.

2.4 Additional Reverse Engineering Tasks

To explore how exactly pretraining helps analyze memory depen-
dencies, we investigate what knowledge or properties of programs
the pretrained model learns. We resort to probing, which uses the
encoded instruction representations of the pretrained model and
finetunes them on the probing tasks, usually with a small number
of labeled data and training epochs [54]. Specifically, we consider
three critical reverse engineering tasks, which either assist or bene-
fit from analyzing memory dependencies. If the pretrained model
performs well on these reverse engineering (i.e., probing) tasks, it
gives evidence that pretraining has encoded useful representation
for analyzing memory dependencies.
Inferring Memory Regions. Inferring memory-access regions
helps reduce the spurious dependencies reported by VSA (§1). We
consider the task sketched in DeepVSA [35], where the model needs
to statically predict the memory region accessed by each instruction
that operates on memory.
Definition 2.2 (Memory Region Prediction). Given a code block
consisting of a sequence of 𝑛 assembly instructions: 𝐼 = (𝐼1, ..., 𝐼𝑛),
a memory region predictor 𝑓𝑟 , parameterized by the pretrained
weights 𝜃 , predicts the memory region accessed by each instruction:
𝑦 = 𝑓𝑟 (𝐼 ;𝜃 ), 𝑦 ∈ M𝑛,M = {stack,heap,global,other}.
Inferring Function Signature. Traditionally, function signatures
are predicted by analyzing the memory access patterns of variables

and propagating the types implied by the inferred patterns up to
the function argument. Memory dependencies help the propagating
types along the dependent instructions [49]. The inferred variable
types, in turn, also help reduce the spurious bogus dependencies,
i.e., two memory accesses with different types are not dependent.
We consider the task described in EKLAVYA [15], where the model
statically predicts the function signature, including the (i) argument
arity, (ii) argument types, and (iii) function return types.
Definition 2.3 (Function Signature Prediction). Given an 𝑛-
instruction procedure 𝑃 : 𝑃 = (𝐼1, ..., 𝐼𝑛), a function signature pre-
dictor 𝑓𝑠 , parameterized by the pretrained weights 𝜃 , predicts the
function signature as follows. (i) When 𝑃 is treated as callee, 𝑓𝑠
predicts 𝑃 ’s signature: 𝑦 = 𝑓𝑠 (𝑃 ;𝜃 ). (ii) When 𝑃 is treated as caller,
𝑓𝑠 takes call site 𝐼𝑐 ∈ 𝑃 as an additional input, and predicts the sig-
nature of the procedure that 𝐼𝑐 calls: 𝑦 = 𝑓𝑠 (𝑃, 𝐼𝑐 ;𝜃 ). In both cases,
𝑦 = (𝑎,𝐴, 𝑟 ) is a tuple where (i) 𝑎 ∈ [0, 7] denotes argument arity
with at most 7 arguments. (ii)𝐴 = (𝐴1, 𝐴2, 𝐴3) denotes 𝑃 ’s first 3 ar-
gument types: 𝐴𝑖 ∈ {int, char, float, ptr, enum, union, struct}.
(iii) 𝑟 ∈ {int, char, float, ptr, enum, union, struct, void} is the
procedure 𝑃 ’s return type.
Matching Indirect Calls. Analysis of memory dependencies has
been extensively applied to infer indirect calls [47, 96]. Therefore,
we study how the pretrained model performs on this task.
Definition 2.4 (Matching Indirect Calls). Given a pair of proce-
dures 𝑃𝑖 , 𝑃 𝑗 , an indirect call predictor 𝑓𝑐 predicts whether 𝑃𝑖 can call
𝑃 𝑗 during runtime: 𝑦 = 𝑓𝑐 (𝑃𝑖 , 𝑃 𝑗 ), where 𝑦 ∈ {0, 1}; 𝑦 = 1 denotes
𝑃𝑖 can call 𝑃 𝑗 while 𝑦 = 0 denotes 𝑃𝑖 cannot.

Unlike the first two tasks, we define 𝑓𝑐 as deterministic function
that takes as input the inferred function signatures (Definition 2.3)
of 𝑃 𝑗 and the call-site within 𝑃𝑖 . 𝑓𝑐 outputs 1 if and only if the
signature of 𝑃 𝑗 closelymatches at least one call-site signaturewithin
𝑃𝑖 . We elaborate on the matching criteria in §3.6.

3 METHODOLOGY

This section elaborates on the design of NeuDep, including the
tracing framework, the model’s input representation, the neural
architecture, and the training tasks.

3.1 Tracing Framework

Algorithm 1 shows how our tracing framework works on a proce-
dure. We consider the following two key designs (§2.3).
Environment Support. As shown in Algorithm 1 line 1 and 2, we
first load the entire binary into an emulator and make a snapshot of
the process image after initializing all dependent libraries. We then
iterate every function inside the binary and execute each function
(line 4 and 5). Before the execution, we restore the process memory
using the saved snapshot (line 6) to ensure that all the functions,
including external library functions, are properly resolved.
Branch Flipping. Inspired by coverage-guided fuzzing, we design
a dynamic branch flipping mechanism for recording complete and
diverse execution behaviors. We first maintain a list of covered
basic blocks during past execution (line 8-15). We then hook every
conditional branch during forced execution and monitor the jump
target. If the jump target has already been covered before and
another is not covered yet, we flip the branch. In order to ensure
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Algorithm 1 Coverage-Guided Semantic-Preserving Execution
1: Load(𝑏𝑖𝑛𝑎𝑟𝑦) ⊲ Load binary into emulator
2: 𝑚𝑒𝑚 = Snapshot() ⊲ Save memory snapshot after initialization
3: 𝑐𝑜𝑣𝑒𝑟𝑒𝑑_𝑏𝑏 = {}
4: for 𝑓 𝑢𝑛𝑐 ∈ 𝑏𝑖𝑛𝑎𝑟𝑦 do ⊲ Loop every function
5: Restore(𝑚𝑒𝑚) ⊲ Restore memory snapshot
6: Initialize(𝑠𝑡𝑎𝑐𝑘, 𝑟𝑒𝑔𝑠 ) ⊲ Initialize stack and registers with random values
7: /* Loop every conditional branch */
8: for 𝑐𝑜𝑛𝑑_𝑏𝑟𝑎𝑛𝑐ℎ ∈ ForceExec(𝑓 𝑢𝑛𝑐 ) do
9: /* 𝑏𝑏1, 𝑏𝑏2 are jump targets, 𝑏𝑏1 is the default one */
10: if 𝑏𝑏1 ∈ 𝑐𝑜𝑣𝑒𝑟𝑒𝑑_𝑏𝑏 and 𝑏𝑏2 ∉ 𝑐𝑜𝑣𝑒𝑟𝑒𝑑_𝑏𝑏 then

11: FlipBranch(𝑐𝑜𝑛𝑑_𝑏𝑟𝑎𝑛𝑐ℎ)
12: 𝑐𝑜𝑣𝑒𝑟𝑒𝑑_𝑏𝑏.add(𝑏𝑏2)
13: else

14: 𝑐𝑜𝑣𝑒𝑟𝑒𝑑_𝑏𝑏.add(𝑏𝑏1)

the flipped branch does not introduce violations of instruction
semantics, we implement a semantic-preserving mechanism by
patching branch instructions with reverse conditions if it is flipped.
For example, a flipped branch instruction je 0x8a will be patched
to jne 0x8a.

3.2 Input Representation

At a high level, NeuDep takes three sequences as input, i.e., assembly
instructions, trace values, and instruction addresses.
Assembly. We represent the assembly instructions 𝐼 = (𝐼1, ..., 𝐼𝑛)
as 𝑛 ordered tuples. Each tuple 𝐼𝑖 consists of 3 members: 𝐼𝑖 =

(𝑐𝑖 , 𝑝𝑖 ,𝑚𝑖 ), where 𝑐𝑖 , 𝑝𝑖 , 𝑚𝑖 indicate code token, position, and
whether 𝑐𝑖 accesses memory, respectively. Specifically, 𝑐𝑖 denotes
the tokens obtained from tokenizing the assembly instructions, re-
moving punctuations, and transforming all constants to const. As
we flatten each instruction to multiple tokens, we use 𝑝𝑖 to anno-
tate the relative position of 𝑐𝑖 within the instruction to specify the
instruction boundary. Moreover, 𝑝𝑖 helps the self-attention layers,
which are permutation-invariant to the input tokens, to understand
the relative order of the operands. Finally, 𝑚𝑖 ∈ {𝐹,𝑇 } denotes
whether 𝑐𝑖 accesses memory.
Example 3.1. Consider the instruction sequence add
rax,0x8;mov [rax],rbx. It will be represented as:

𝐼 𝐼1 𝐼2 𝐼3 𝐼4 𝐼5 𝐼6©­«
𝑐

𝑝

𝑚

ª®¬ ©­«
add
1
F

ª®¬ ©­«
rax
2
F

ª®¬ ©­«
const
3
F

ª®¬ ©­«
mov
1
F

ª®¬ ©­«
rax
2
T

ª®¬ ©­«
rbx
3
F

ª®¬
Trace. We represent the trace values using 𝑇 = (𝑇1, ...,𝑇𝑛) aligned
to the assembly instruction sequence 𝐼 . Each 𝑇𝑖 ∈ 𝑇 consists of a
list 𝑇𝑖 = (𝑏𝑖1, ..., 𝑏

𝑖
8), where the numeric value is a (padded) 8-byte

values 𝑏𝑖
𝑗∈[1,8] . This reduces a prohibitively large vocabulary (264)

to a much more manageable size (256) [64]. The most and least
significant byte is 𝑏1 and 𝑏8, respectively. We further normalize
each byte 𝑏𝑖

𝑗∈[1,8] into [0, 1) to stablize the training. For instruction
tuples 𝐼𝑖 whose 𝑐𝑖 is not a register or a constant, its aligned trace
values 𝑇𝑖 contains 8 dummy values (-), which will not be masked
during pretraining (§3.4). For 𝑇𝑖 whose aligned 𝐼𝑖 is not executed,
we assign the value𝑏 𝑗 =0x100,∀𝑗 ∈ [1, 8]. In pretraining, to predict
the trace value consisting of all 100s instead of regular bytes, the
model needs to determine whether the corresponding assembly

instructions are executed by reasoning the branch predicate and
control flow.
Example 3.2. Consider the following 4 instructions: add
rax,0x8;cmp rax,0x10;je 0x1004a8b5f;push rdi; input
rax=0x0. 𝑇 will look like (aligned with 𝑐𝑖 ):

𝑐 add rax const cmp rax const je const push rdi

𝑇 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7 𝑇8 𝑇9 𝑇 ∗
10©­­­­­­­­­­­«

𝑏1
𝑏2
𝑏3
𝑏4
𝑏5
𝑏6
𝑏7
𝑏8

ª®®®®®®®®®®®¬

©­­­­­­­­­­­«

-
-
-
-
-
-
-
-

ª®®®®®®®®®®®¬

©­­­­­­­­­­­«

00
00
00
00
00
00
00
00

ª®®®®®®®®®®®¬

©­­­­­­­­­­­«

00
00
00
00
00
00
00
08

ª®®®®®®®®®®®¬

©­­­­­­­­­­­«

-
-
-
-
-
-
-
-

ª®®®®®®®®®®®¬

©­­­­­­­­­­­«

00
00
00
00
00
00
00
08

ª®®®®®®®®®®®¬

©­­­­­­­­­­­«

00
00
00
00
00
00
00
10

ª®®®®®®®®®®®¬

©­­­­­­­­­­­«

-
-
-
-
-
-
-
-

ª®®®®®®®®®®®¬

©­­­­­­­­­­­«

00
00
00
01
00
4a
8b
5f

ª®®®®®®®®®®®¬

©­­­­­­­­­­­«

-
-
-
-
-
-
-
-

ª®®®®®®®®®®®¬

©­­­­­­­­­­­«

100∗

100∗

100∗

100∗

100∗

100∗

100∗

100∗

ª®®®®®®®®®®®¬
*We show the byte value before normalization to save space. As𝑇10 corresponds to rdi, which
is not executed, its value is 1, which is 0x100 before normalizing.

Address. Similar to trace value sequence𝑇 , we represent the address
of each instruction (when loaded in memory) as 𝑛 ordered lists,
𝐴 = (𝐴1, ..., 𝐴𝑛), aligned to 𝐼 . 𝐴𝑖 ∈ 𝐴 consists of 8 bytes organized
as an ordered list: 𝐴𝑖 = (𝑏𝑖1, 𝑏

𝑖
2, ..., 𝑏

𝑖
8). On a 64-bit architecture, 8

bytes are enough to represent all possible virtual addresses of a
running program. For 𝑐𝑖 within one instruction (e.g., Example 3.1),
they share the same instruction address.
Example 3.3. Consider 2 instructions: push rbp;jmp rax start
from the address 0x14a8b. 𝐴 will look like (aligned with 𝑐𝑖 ):

𝑐 push rbp jmp rax

𝐴 𝐴1 𝐴2 𝐴3 𝐴4©­«
𝑏6
𝑏7
𝑏8

ª®¬ ©­«
01
4a
8b

ª®¬ ©­«
01
4a
8b

ª®¬ ©­«
01
4a
8c

ª®¬ ©­«
01
4a
8c

ª®¬
We omit showing 𝑏1, ..., 𝑏5 as they are all zeros

As the machine instruction of push rbp only takes one byte (0x55),
the addresses of two instructions are off by one byte.

3.3 NeuDep Architecture

Figure 3 illustrates NeuDep’s architecture. In the following, we
describe how the inputs (§3.2) are embedded, fused, and further
processed to make the prediction. All these steps are handled by
neural modules that can be stacked together and trained end-to-end.
Input Embeddings. Let 𝑑 denote the embedding dimen-
sion, we denote the embeddings of each tuple (𝑐𝑖 , 𝑝𝑖 ,𝑚𝑖 ) as
𝐸 (𝑐𝑖 ), 𝐸 (𝑝𝑖 ), 𝐸 (𝑚𝑖 ) ∈ R𝑑 . We sum these embeddings to form the
embeddings of 𝐼𝑖 : 𝐸 (𝐼𝑖 ) = 𝐸 (𝑐𝑖 ) + 𝐸 (𝑝𝑖 ) + 𝐸 (𝑚𝑖 ). We denote the
embedding of all tokens as 𝐸0 (𝐼 ) = (𝐸 (𝐼1), ..., 𝐸 (𝐼𝑛)), representing
the instructions’ embeddings before the first self-attention layer.
We first apply 𝑙 self-attention layers on 𝐸0 (𝐼 ) to learn the contextual
embeddings of the assembly instructions: 𝐸𝑙 (𝐼 ).

To embed the 8-byte values in 𝑇 and 𝐴 into a space that pre-
serves their numerical properties, we employ a convolution net-
work with 8 kernels to learn how bytes within each neighbor-
ing size interact with each other. Let 𝐶𝑤 denote applying a con-
volution filter with width 𝑤 and output channel 𝑂𝑤 , we first
apply 8 convolution filters on 𝑇𝑖 = (𝑏1, ..., 𝑏8) and concatenate
them: 𝐶𝑜𝑢𝑡 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝜙 (𝑚𝑎𝑥 (𝐶1 (𝑇𝑖 ))), ..., 𝜙 (𝑚𝑎𝑥 (𝐶8 (𝑇𝑖 )))). Here
𝜙 denotes an activation function, and we use ReLU in this paper.

752



NeuDep: Neural Binary Memory Dependence Analysis ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

E(m)
+

E(p)E(c)

Self-Attention

A

Conv Conv

E0(I)

El(I)

T
+

Self-Attention

Fuse El(I), E(T), E(A) 

E(T) E(A)

Memory
Dependency

Prediction Heads

Pretrain
Task

Downstream
Tasks

EL

Weight Sharing

I

El(I)E(T) E(A)

Gate

E'(T)E'(A)

concat

Gate

+

Efuse

concat

Fuse

Figure 3: NeuDep’s high-level architecture with details of

the fusion module. It takes as input 3 sequences: the instruc-

tions 𝐼 , trace values 𝑇 , and code addresses 𝐴 (§3.2), where 𝐼

is embedded by 𝑙 self-attention layers, and 𝑇 and 𝐴 are em-

bedded by convolution networks. They are then fused by a

fusion module. The fused embeddings go through another

𝐿 − 𝑙 self-attention layers and output the final embeddings

𝐸𝐿 (§3.3).

𝐶𝑜𝑢𝑡 ∈ R
∑8

𝑤=1𝑂𝑤 is the concatenated result. We then transform
𝐶𝑜𝑢𝑡 by a highway network [76] (see Appendix) and obtain the
embedding for 𝑇𝑖 : 𝐸 (𝑇𝑖 ).

To learn a universal value representation from 8 bytes, we share
the weights of this network by applying it on both 𝑇 and 𝐴. There-
fore, 𝐸 (𝐴𝑖 ) is embedded similarly as described above.
Fusing Heterogenous Inputs. Intuitively, after embedding all
the inputs, they are expected to carry basic meaning in their
own modalities. We then employ a fusion module that aug-
ments the instruction embedding by its traces and address. Specif-
ically, let 𝐺𝑇𝑖 = 𝜎 (𝑀𝐿𝑃 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝐸𝑙 (𝐼𝑖 ), 𝐸 (𝑇𝑖 )))) and 𝐺𝐴𝑖

=

𝜎 (𝑀𝐿𝑃 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝐸𝑙 (𝐼𝑖 ), 𝐸 (𝐴𝑖 )))) denote the learned gates that con-
trol how much 𝐸 (𝑇𝑖 ) and 𝐸 (𝐴𝑖 ) should be fused in 𝐸𝑙 (𝐼𝑖 ), we have:

𝐸
𝑓 𝑢𝑠𝑒

𝑖
= 𝐸𝑙 (𝐼𝑖 ) +𝐺𝑇𝑖 ·𝑀𝐿𝑃 (𝐸 (𝑇𝑖 )) +𝐺𝐴𝑖

·𝑀𝐿𝑃 (𝐸 (𝐴𝑖 ))

Cross-Modality Inference. Let 𝐿 denote the total number of self-
attention layers, in which 𝑙-th layers are used to learn the instruc-
tion representation 𝐸𝑙 (𝐼 ). We feed 𝐸 𝑓 𝑢𝑠𝑒 = (𝐸 𝑓 𝑢𝑠𝑒1 , ..., 𝐸

𝑓 𝑢𝑠𝑒
𝑛 ) to the

remaining 𝐿 − 𝑙 layers. On top of the last self-attention layer, we
obtain 𝐸𝐿 = (𝐸𝐿1 , ..., 𝐸

𝐿
𝑛 ) and employ trainable prediction heads for

pretraining (§3.4), finetuning (§3.5), and probing (§3.6).

3.4 Pretraining: Interpret and Synthesize Code

We give the formal definition of our pretraining task as follows.
Definition 3.1 (Pretraining). Given (i) a code block 𝐼 = (𝐼1, ..., 𝐼𝑛),
(ii) its trace𝑇 :𝑇 = (𝑇1, ...,𝑇𝑛), and (iii) a mask rate 𝑟 , we pretrain the
model 𝑓 , parameterized by 𝜃 , by the following training objectives.
(1) Interpret 𝐼 : predict the masked trace 𝑇𝑀𝑇 : 𝑇𝑀𝑇 ⊆ 𝑇, |𝑇𝑀𝑇 | =

|𝑇 | · 𝑟 , given 𝐼 and 𝑇 −𝑇𝑀𝑇 : 𝑇𝑀𝑇 = 𝑓 (𝐼 ,𝑇 −𝑇𝑀𝑇 ;𝜃 ).

(2) Synthesize 𝐼 : predict the masked instructions 𝐼𝑀𝐼 : 𝐼𝑀𝐼 ⊆
𝐼 , |𝐼𝑀𝐼 | = |𝐼 | · 𝑟 , given 𝐼 − 𝐼𝑀𝐼 and 𝑇 : 𝐼𝑀𝐼 = 𝑓 (𝐼 − 𝐼𝑀𝐼 ,𝑇 ;𝜃 ).

(3) Both: predict both 𝐼𝑀𝐼 and 𝑇𝑀𝑇 given 𝐼 − 𝐼𝑀𝐼 and 𝑇 − 𝑇𝑀𝑇 :
𝐼𝑀𝐼 ,𝑇𝑀𝑇 = 𝑓 (𝐼 − 𝐼𝑀𝐼 ,𝑇 −𝑇𝑀𝑇 ;𝜃 ).
Specifically, the pretraining takes as input the output of the last

self-attention layer 𝐸𝐿 = (𝐸𝐿1 , ..., 𝐸
𝐿
𝑛 ), and minimize the (1) cross-

entropy (CE) between the predicted masked code 𝑐 and the actual
code 𝑐𝑀𝐼 , and the (2) mean squared error (MSE) between predicted
masked values (8 bytes) 𝑇𝑀𝑇 and the actual values 𝑇𝑀𝑇 :

argmin
𝜃

∑︁
𝑖∈𝑀𝐼

−𝑐𝑖 log(𝑐𝑖 ) + 𝛼
∑︁
𝑗∈𝑀𝑇

(𝑇𝑗 −𝑇𝑗 )2 (1)

𝜃 denote the trainable parameters NeuDep’s model (§3.3) and the
prediction heads: 𝑀𝐿𝑃𝑐 and 𝑀𝐿𝑃𝑇 , two multilayer perceptrons
that take 𝐸𝐿 as input and predict the masked instructions: 𝑐𝑀𝐼 =

𝑀𝐿𝑃𝑐 (𝐸𝐿𝑀𝐼
) and trace values: 𝑇𝑀𝑇 = 𝑀𝐿𝑃𝑇 (𝐸𝐿𝑀𝑇

).
Composition Learning. We increase the masking percentage 𝑟
(Definition 3.1) at each epoch. Let 𝐿,𝑈 denote the lower and upper
bound of the 𝑟 , respectively, and 𝐸𝑃𝑂𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛 denote the pretraining
epochs, at 𝑘-th epoch, 𝑟 = 𝐿 + (𝑈 − 𝐿) × (𝑘 − 1)/𝐸𝑃𝑂𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛 .

3.5 Finetuning: Predict Memory Dependencies

As shown in Figure 1, after the model is pretrained, we let the model
predict value flows between instructions based on its learned repre-
sentation of assembly code without traces. To this end, we detach
the fusion module and the convolution module for embedding the
trace 𝑇 and addresses 𝐴 (right part in Figure 3) and directly stack
the upper 𝐿 − 𝑙 self-attentions on top of the first 𝑙 self-attention
layers.

Given 𝐸𝐿 = (𝐸𝐿1 , ..., 𝐸
𝐿
𝑛 ) (§3.3), we employ a prediction head

𝑀𝐿𝑃𝑑𝑒𝑝 that minimizes the binary cross-entropy (BCE) between
the predicted dependency 𝑦 of {𝐼𝑖 , 𝐼 𝑗 } ⊆ 𝐼 and their ground truth 𝑦
(Definition 2.1): argmin𝜃 −𝑦 · log𝑦 − (1 − 𝑦) · log(1 − 𝑦), where

𝑦 = 𝑀𝐿𝑃𝑑𝑒𝑝 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝜓𝑎 (𝐸𝐿), 𝐸𝐿𝑖 , 𝐸
𝐿
𝑗 , |𝐸

𝐿
𝑖 − 𝐸𝐿𝑗 |, 𝐸

𝐿
𝑖 ⊙ 𝐸𝐿𝑗 ))

Here 𝜓𝑎 denotes taking the mean pooling of 𝐸𝐿 and ⊙ denotes
element-wise multiplication. This results in the input shape to
𝑀𝐿𝑃𝑑𝑒𝑝 to beR5𝑑 .

3.6 Downstream Reverse Engineering Tasks

As described in §2.4, we consider three security-critical reverse
engineering tasks as our probing tasks. We follow the similar setup
in §3.5 and stack separate prediction heads on top of 𝐸𝐿 , and train
with additional training samples collected for probing.
Inferring Memory Regions. Given the output of the last self-
attention layers 𝐸𝐿 = (𝐸𝐿1 , ..., 𝐸

𝐿
𝑛 ), we stack a prediction head𝑀𝐿𝑃𝑟

that predicts the memory-access regions for each instruction 𝐼𝑖 . The
training task then minimizes the sum of cross-entropy between the
predicted memory regions 𝑦 of each instruction and their ground
truth memory region 𝑦: argmin𝜃

∑𝑛
𝑖=1 −𝑦𝑖 · log(𝑀𝐿𝑃𝑟 (𝐸𝐿𝑖 )).

Inferring Function Signature. As shown in Definition 2.3, pre-
dicting function signatures consists of predicting 5 types of labels:
{𝑎,𝐴1, 𝐴2, 𝐴3, 𝑟 }. For each label, we create two prediction heads:
𝑀𝐿𝑃𝑐𝑎𝑙𝑙𝑒𝑟 and 𝑀𝐿𝑃𝑐𝑎𝑙𝑙𝑒𝑒 . For example, 𝑀𝐿𝑃𝑎

𝑐𝑎𝑙𝑙𝑒𝑟
takes as input

the embedding corresponding to the call site 𝑐 ∈ [1, 𝑛] from the last
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self-attention layer 𝐸𝐿 , and predicts the number of arguments that
the call site prepares: 𝑎 = 𝑀𝐿𝑃𝑎

𝑐𝑎𝑙𝑙𝑒𝑟
(𝐸𝐿𝑐 ).𝑀𝐿𝑃𝑎

𝑐𝑎𝑙𝑙𝑒𝑒
takes as input

the embeddings from the last self-attention layer 𝐸𝐿 and predicts the
number of arguments the callee expects: 𝑎 = 𝑀𝐿𝑃𝑎

𝑐𝑎𝑙𝑙𝑒𝑒
(𝜓𝑎 (𝐸𝐿))

where𝜓𝑎 denotes the average pooling of all embeddings in 𝐸𝐿 . The
training objective for each head then minimizes the cross-entropy
loss between the predicted label and the ground truth label.
Matching Indirect Calls. Given the signatures of a call site 𝑃𝑖 and
a callee 𝑃 𝑗 , we implement the indirect call predictor 𝑓𝑐 (Definition
2.4) by considering the following 4 criteria. (i) Loose arity: 𝑃𝑖 must
prepare at least as many arguments as 𝑃 𝑗 accepts. (ii) Strict arity:
the arities of 𝑃𝑖 , 𝑃 𝑗 must match exactly. (iii) Argument type: the
types of 𝑃𝑖 ’s first three arguments must match 𝑃 𝑗 ’s argument types
in at least 2 or 3 positions. (iv) Return type: if 𝑃𝑖 is non-void, then 𝑃 𝑗
must be non-void. The four criteria can be composed to determine
whether 𝑃𝑖 , 𝑃 𝑗 matches. We evaluate the 8 compositions in §5.3.

4 IMPLEMENTATION AND SETUP

We implement NeuDep’s tracing framework in Qiling [81] and the
model architecture based on PyTorch. We run all experiments and
baselines on a Linux server, with Intel Xeon 4214 at 2.20GHz with
48 virtual cores, 188GB RAM, and 4 Nvidia RTX 2080Ti GPUs.
Dataset.We collect 41 open-source projects, ranging from utility
libraries like Binutils to popular libraries like OpenSSL (see Appen-
dix). We compiled these projects with 4 optimizations, i.e., O0-O3,
using GCC-9.3.0, and 4 obfuscations based on Clang-8 [94], i.e.,
bogus control flow (bcf), control flow flattening (cff), basic block
splitting (spl), and instruction substitution (sub). Among the 41
projects, we select 9 projects as our finetuning set and the rest for
pretraining. They include bash-5.0, bc-1.07.1, binutis-2.30, bison-
3.3.2, cflow-1.6, coreutils-8.30, curl-7.76.0, findutils-4.7.0, gawk-5.1.0.
The 9 projects have disparate functionalities and sizes such that
they are diverse and representative of real-world software. We per-
form static disassembly (taking less than 0.1 seconds per input)
followed by a simply post-processing to parse the raw assembly
into the format that the model accepts (§3.2).
Ground Truth Dependencies.We follow [96] by using dynamic
analysis to collect the ground truth memory dependencies. To quan-
tify how NeuDep and the baselines perform, we measure the de-
tected dependencies among the reference ones (detect) and mark
the rest as miss; we treat the predicted dependencies not included
in the references as potential false positives (FP).
Baselines.We compare NeuDep to Angr [85], Ghidra [1], SVF [78],
and DeepVSA [35]. As SVF does support dumping its result to the
compiled binary (confirmed with the authors) [78], we propagate its
result using the DWARF information. As one source statement can
map to multiple assembly instructions, we treat it as a true positive
if its detected dependencies include the ground truth instruction
pair. We thus omit evaluating SVF on the obfuscated binaries as
the obfuscator significantly distorts the mapping in DWARF. For
DeepVSA, its VSA implementation requires taking a crash dump as
input and does not work for general memory dependence analysis.
Therefore, we run its released trained model and use its predicted
memory region to determine whether two memory-access instruc-
tions are dependent. We note that PalmTree [51] also compared to

DeepVSA on the standalone memory region prediction task without
running its VSA module. However, as PalmTree does not release
its trained model for memory region prediction, we cannot run
PalmTree on our dataset to predict memory dependencies. There-
fore, we instead compare NeuDep to PalmTree and its evaluated
baselines (including DeepVSA) in our probing studies (5.3).

BDA [96] is the state-of-the-art binary memory dependence
analysis tool, to the best of our knowledge. We reached out to the
authors and confirmed that BDA targets reducing false negatives in
the inter-procedural setting, and they evaluated it on only O0 bina-
ries. Per our requests, BDA authors performed preliminary studies
and observed BDA achieves low miss rate (0.02%), but suffers from
high false positive rate and runtime overhead. For example, on
readelf compiled by O0, BDA has around 2.23% precision (detecting
5,742 true dependencies out of a total of 256,596 predicted depen-
dencies). Due to the different focuses between BDA and NeuDep,
we thus omit including BDA results to avoid unfair comparison.

For probing tasks, we compare NeuDep to (i) PalmTree [51] and
the other baselines that PalmTree evaluated such as DeepVSA [35],
Asm2Vec [27], and Instruction2Vec [50], on predicting memory-
access regions, (ii) EKLAVYA [15] on predicting function signatures,
and (iii) EKLAVYA and TypeArmor [82] on predicting indirect calls.
Hyperparameters. For composition learning, we set 𝐿 = 0.2 and
𝑈 = 0.8 (§3.4). For pretraining (Equation 1), we set 𝛼 = 100 by
observing that MSE loss is around 100× smaller than that of CE in
our experiments.

5 EVALUATION

We focus on three main research questions in the evaluation.

• RQ1: How well does NeuDep perform in analyzing memory
dependencies? (§5.1)

• RQ2: How much does each design choice in NeuDep contribute
to its performance? (§5.2)

• RQ3: How well does NeuDep perform in downstream reverse
engineering tasks? (§5.3)

5.1 NeuDep Performance

Table 2 presents the results of NeuDep and other baselines on the
test set categorized by their optimization and obfuscation flags.
NeuDep’s results are obtained from finetuning a single model on all
datasets, excluding the testing set. On average, NeuDep detects 1.5×
more dependencies than the second-best (DeepVSA), while having
4.5× fewer misses than the second-best (SVF). Ghidra has fewer
false positives than NeuDep, but at the cost of missing substantial
dependencies, detecting 3.3× fewer dependencies than NeuDep. Be-
sides, we note that DeepVSA produces 6.4× more false positives on
higher optimizations when compared to O0. This is likely because
memory access patterns (e.g., using rbp and rax to access stack and
heap, respectively, are largely broken by compilers.
Zero-Shot Generalizability to Unseen Projects. In the above ex-
periment, our training and testing set are randomly sampled with
non-overlapping pairs, but they could come from the same software
project. Therefore, we investigate how NeuDep performs when its
testing set comes from entirely different software projects. We col-
lect 2 software projects featuring a web server, i.e., Nginx-1.21.1,
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Table 2: NeuDep and other baselines’ results on the test set categorized by the compiler optimizations and obfuscations.

Flags # Dep Angr Ghidra SVF DeepVSA∗ NeuDep
Detect Miss FP Detect Miss FP Detect Miss FP Detect Miss FP Detect Miss FP

O0 1,013 28 985 16 355 658 7 380 633 392 420 593 329 930 83 147

O1 1,310 12 1,298 14 387 923 19 486 824 1,474 617 693 2,013 898 412 576

O2 1,103 14 1,089 10 330 773 6 403 698 1,392 464 639 1,512 822 281 480

O3 1,132 14 1,118 14 332 800 14 425 707 1,351 472 660 1,527 827 305 501

bcf 3,144 23 3,121 14 160 2,984 0 - - - 613 2,531 445 3,122 22 127

cff 758 22 736 9 208 550 0 - - - 337 421 113 724 34 56

spl 1,296 24 1,272 18 173 1,123 2 - - - 515 781 181 1,245 51 77

sub 938 22 916 14 264 674 7 - - - 393 545 236 885 53 127

Avg. 1,337 20 1,317 14 276 1,061 7 424 716 1,152 478 858 795 1,182 155 261

∗DeepVSA’s VSA implementation takes crash dumps as input and does not work on our dataset (regular binary code without crashes). Therefore, we run DeepVSA’s released model on our dataset
and use its predicted memory region to flag dependent instructions (§4).

Table 3: NeuDep performance when dividing its dataset by

non-overlapping train-test vs. non-overlapping programs,

optimizations, and obfuscations. Δ denotes the performance

change scaled by the number of reference dependencies.

Cross- # Dep Regular Unseen Δ (+/-)
Detect FP Detect FP Detect FP

Proj. Nginx 226 164 56 155 68 -4% +5.3%
Lynx 322 240 92 244 120 +1.2% +8.7%

Opt.

O0 1,013 959 90 958 103 -0.1% +1.3%
O1 1,310 1,026 112 988 298 -2.9% +14.2%
O2 1,103 919 195 908 208 -1% +1.2%
O3 1,132 922 207 933 235 +1% +2.5%

Obf.

bcf 3,144 3,131 104 2,946 925 -5.9% +26.1%
cff 758 746 38 748 35 +0.3% -0.4%
spl 2,217 2,171 121 2,076 101 -4.3% -0.9%
sub 938 907 76 914 89 +0.8% +1.4%

Avg. 1,216 1,119 109 1,087 218 -2.6% +9%

and a web browser, i.e., Lynx-2.8.9, to which none of the projects
in our dataset has similar functionality. We compile each software
project with 4 optimizations (O0-O3), and test NeuDep on these
unseen software projects. As a baseline, we finetune a model where
its training set includes the project, but with non-overlapping in-
struction pairs (“Regular” in Table 3).

The first two rows in Table 3 demonstrate that NeuDep remains
relatively robust when the testing set is collected from unseen
projects, i.e., on average, the number of detected dependencies
only drops 1.4% and false positives increased by 7%. Interestingly,
training without samples from Lynx even increases the detected
dependencies, but at the expense of much higher false positives.
Zero-Shot Generalizability to Unseen Optimizations/Obfusca-
tions. Aggressive compiler transformations can bring many chal-
lenges to inferring memory dependencies, e.g., substituting instruc-
tions introduces more pointer arithmetic operations, which requires
reasoning over the bloated instructions to detect the value flows.
To study whether NeuDep generalizes to unseen optimizations and
obfuscations, we exclude binaries optimized or obfuscated by each
strategy (§4) in training and test NeuDep on the excluded binaries.

Table 3 presents results when testing NeuDep on each unseen
optimizations and obfuscations. We also include the baseline re-
sults when its training set includes those optimized or obfuscated
binaries (but with non-overlapping pairs). We observe that NeuDep

Table 4: Runtime of NeuDep vs. Angr and Ghidra. The last

column shows the speedup over the second-best tool.

Size (MB) Inference Time (s) SpeedupAngr Ghidra NeuDep
bash 2.8 7685.9 60.4 24.4 2.5×
bc 0.5 298.8 5.3 1.4 3.8×

binutils 74 70157.1 3077.2 695.6 4.4×
bison 1.6 1730.1 30.2 10.3 2.9×
cflow 0.56 695.9 6.5 3 2.2×

coreutils 16 40,188.2 392.2 105.9 3.7×
curl 0.77 91.5 14.5 3.1 4.7×

findutils 2.3 882.7 80.1 23.2 3.5×
gawk 3.8 2305.3 55.0 14.1 3.9×
Avg. 12.8 13781.7 413.5 110.1 3.5×

generalizes to unseen optimizations and obfuscations, with only
2.6% drop in detection rate and 9% increase in false positives.
Runtime Performance. One of the most significant benefits of
NeuDep over traditional approaches comes from its speed, as its
analysis is amenable to parallelization with GPUs. Table 4 compares
the speed of NeuDep to Angr and Ghidra. We run each tool on
each project compiled with O0 from our finetuning dataset (§4). We
observe that Angr often takes long time and cannot finish running
(as also confirmed by [96]). Thus, we time it out after 5 minutes.
Consequently, Angr’s actual runtime is under-estimated. We do
not compare to (i) DeepVSA because it still relies on VSA, so it is at
least as slow as any VSA implementation, and (ii) SVF because it
works only on LLVM IR, not directly on binaries. Therefore, SVF has
extremely high overheard from mapping LLVM IR results to binary.
Table 4 shows that NeuDep is 3.5× faster than the second-best tool
(Ghidra) and orders of magnitude faster (125.2×) than Angr.

5.2 Ablation Study

We study how much each design in NeuDep (§3) contributes to its
performance. We follow the setup in §5.1. Table 5 summarizes the
results where we bold NeuDep’s default choice.
Pretraining. We first ablate the effectiveness of pretraining in
assisting memory dependence analysis. Table 5 shows that pretrain-
ing NeuDep significantly improves its performance by 12.6% in the
number of detected dependencies. The number of misses and false
positives drop by 57.6% and 31.4%, respectively.
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Table 5: Ablation on NeuDep designs. We treat the first row

of each design as the baseline and compute the improvement

of other alternatives.

Ablation Setup Detect Miss FP Improve (+/-)
Detect Miss FP

Pretrain w/o 8,780 1,914 1,477 0.0% 0.0% 0.0%
w/ 9,882 812 1,013 +12.6% -57.6% -31.4%

Value
Embed

Concat 9,666 1,208 1,027 0.0% 0.0% 0.0%
Conv. 9,882 812 1,013 +2.2% -32.8% -1.4%

Fusing
Strategy

Sum 9,752 942 1,419 0.0% 0.0% 0.0%
1st Layer 9,882 812 1,013 +1.3% -13.8% -28.6%

3rd Layer 9,870 824 1,209 +1.2% -12.5% -14.7%
5th Layer 9,700 994 1,186 +0.5% -5.5% -16.4%

Compos.
Learning

w/o Compos. 9,806 888 1,389 0.0% 0.0% 0.0%
w/ Compos. 9,882 812 1,013 +0.8% -8.6% -27.1%

Code
Addr.

w/o Addr. 9,667 1,027 1,407 0.0% 0.0% 0.0%
w/ Addr. 9,882 812 1,013 +2.2% -20.9% -28%

Byte Aggregation.We study the effectiveness of encoding numeric
values using convolutions with highway network (§3.2) by com-
paring it to the baseline that concatenates the input bytes. Table 5
shows that our encoding mechanism outperforms the baseline by
2.2% and significantly reduces the miss detection rate by 32.8%.
Input Fusion. We explore the effectiveness of input fusion by
comparing it to the baseline that takes the vector sum of the input
embeddings [64, 66]. We also study fusing after which layer is the
most effective. We note that simply summing the embeddings of
code and trace values at input by assuming they are homogeneous
performs the worst. This confirms our intuition that code and trace
are heterogeneous data that benefit from different encoding mecha-
nisms. In addition, we note that combining code and trace at earlier
layers performs the best. This is likely because trace values can par-
ticipate early in the model’s computation of interactions between
instructions and trace values, i.e., fusing in the later layers implies
it has fewer remaining layers to learn how code and trace interacts.
Composition Learning.We study whether composition learning
(§2.3) would help the model’s finetuning performance for detecting
memory dependencies. We compare it to the fixed masking per-
centage strategy where the samples are shuffled randomly, and the
masking rate 𝑟 is fixed to 0.5 on both the code and trace tokens.
Table 5 shows that composition learning moderately improves the
model by 0.8% in detected dependencies but substantially reduces
the number of false positives by 27.1%. This observation confirms
our intuition that arranging the training samples based on their
difficulty helps the model learn more efficiently.
Modeling Address Layout.We study whether annotating the bi-
nary code with its loaded addresses would bring a useful inductive
bias to the model by comparing to the baselines that do not model
them [64, 66]. Table 5 shows that annotating the code with ad-
dresses significantly reduces the model’s missed detection and false
positives, i.e., by 20.9% and 28%, respectively. This shows that the
code address helps the model reduce the spurious dependencies.

5.3 Performance on Reverse Engineering Tasks

We probe pretrained NeuDep using three reverse engineering tasks
that either assist or benefit from memory dependence analysis.

Table 6: Comparison of F1 scores on memory region predic-

tion between NeuDep and PalmTree and other baselines.

Global Heap Stack Other Avg.
Instruction2Vec 0.654 0.566 0.914 0.947 0.77

Asm2Vec 0.517 0.359 0.911 0.948 0.684
DeepVSA 0.835 0.584 0.944 0.959 0.831
PalmTree 0.855 0.714 0.95 0.971 0.873
NeuDep 0.91 0.904 0.977 0.976 0.942

Table 7: We compare NeuDep to EKLAVYA on five function

signature tasks across 4 optimizations for caller and callee.

Caller Callee
O0 O1 O2 O3 O0 O1 O2 O3

Re
t. EKLA. 66.62 70.59 73.63 76.19 91.59 88.87 91.92 95.32

NeuDep 94.65 93.33 95.75 96.41 95.37 93.42 96.06 98.20

𝐴
1 EKLA. 91.56 90.38 91.21 91.55 95.62 92.40 93.05 92.56

NeuDep 97.03 97.09 98.47 99.17 97.24 95.10 97.01 97.84

𝐴
2 EKLA. 81.82 78.70 81.81 82.03 87.25 82.67 82.40 85.07

NeuDep 96.08 94.86 97.68 97.51 93.30 91.34 94.66 92.45

𝐴
3 EKLA. 80.28 79.85 81.35 76.63 77.42 69.18 70.93 69.80

NeuDep 96.88 96.89 97.09 97.24 96.55 94.42 94.66 95.68

A
rit
y EKLA. 92.03 86.02 83.80 82.79 97.48 76.24 77.49 78.69

NeuDep 98.84 95.44 96.35 95.86 99.23 92.57 95.04 96.40

Memory-Access Regions.We follow PalmTree by running NeuDep
on the DeepVSA’s dataset and compare NeuDep to the reported F1
scores of PalmTree, DeepVSA, and other baselines (§4). We note
that DeepVSA’s datasets are all 32-bit x86 binaries, but NeuDep is
pretrained on x86-64 binaries. However, we find that just our vocab-
ulary constructed from x86-64 binaries covers 89.9% of DeepVSA’s
dataset vocabulary, likely because both belong to the x86 family.
Therefore, we simply apply our vocabulary on DeepVSA’s dataset
and replace unseen tokens with “unknown” in the vocabulary.

Table 6 shows that NeuDep remains robust across different mem-
ory regions. On average, NeuDep outperforms PalmTree by 0.069.
On more challenging labels such as heap, NeuDep outperforms
PalmTree and DeepVSA by 0.19 and 0.32, respectively. This is likely
because accessing these memory regions involves more diverse
patterns, e.g., via the stack pointer register (Figure 2).
Function Signature. We compare NeuDep to EKLAVYA on re-
covering function signatures. Table 7 shows that NeuDep outper-
forms EKLAVYA on all signature inference tasks, achieving 12.6%
higher accuracy on average. Most notably, NeuDep’s performance
remains robust across different tasks and optimization levels, while
EKLAVYA’s accuracy shows clear drops. For instance, when com-
paring the prediction accuracy of 3rd argument (𝐴3) and 1st argu-
ment (𝐴1), EKLAVYA decreases by 16.61% while NeuDep’s drops
by only 1.19%. Likewise, within the arity task, EKLAVYA’s accuracy
decreases 14.02% from O0 to O3, while NeuDep decreases 2.91%.
Indirect Calls. Finally, we compare how well NeuDep, EKLAVYA,
and TypeArmor detect indirect calls (Definition 2.4). We consider 8
matching algorithms (§3.6) grouped row-wise by arity matching
criteria detailed in Table 8. On all algorithms, NeuDep outper-
forms EKLAVYA and TypeArmor, achieving 0.032 and 0.07 higher
F1 scores, respectively. With loose arity and return type matching –
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Table 8: NeuDep’s F1 score on matching indirect calls using

several heuristic algorithms. TypeArmor cannot infer argu-

ment types, so the corresponding cells are dashed out.

Arity Arity+Ret Arity+Arg Arity+Arg+Ret

Lo
os
e TypeArmor 0.75 0.752 - -

EKLAVYA 0.777 0.778 0.8 0.801
NeuDep 0.783 0.804 0.83 0.843

St
ric

t TypeArmor 0.777 0.778 - -
EKLAVYA 0.818 0.817 0.811 0.811
NeuDep 0.844 0.853 0.851 0.857

the criterion adopted in TypeArmor – NeuDep outperforms TypeAr-
mor by 0.052 in F1 score. We also note that NeuDep’s performance
increases as the matching algorithm incorporates more conditions,
while the performance of other systems remains roughly the same.

6 THREATS TO VALIDITY

Architecture Bias. We only consider x86-64 binaries. While we
have shown NeuDep generalizes to several x86-32 binaries (§5.3),
it cannot directly be applied to binaries with significantly different
syntax, e.g., those running on ARM or MIPS architectures. However,
as our trace engine supports other architectures well [81], we can
potentially pretrain the model for other architectures. We also plan
to extend our models to different programming languages that come
with efficient tracing support [31, 57, 68].
Performance Bias. We only compare NeuDep’s runtime perfor-
mance on GPUs with other baselines (§5.1), as NeuDep’s neural
module runs on GPU by default. However, we believe that signifi-
cantly benefitting from GPU is indeed a key advantage of ML-based
techniques over traditional binary analysis that cannot easily ex-
ploit GPU parallelism and thus struggle to scale to large binaries.
Ground Truth Bias.Obtaining complete ground truth for memory
dependencies in real-world programs is intractable. Therefore, fol-
lowing BDA’s approach [96], we resort to dynamic analysis and use
the accessed memory locations observed during execution to collect
the reference dependencies. While we cannot guarantee the ground
truth to be complete, this approach can still quantify how many
dependencies are missed by the evaluated tools. Table 2 shows that
NeuDep outperforms all baselines with the fewest misses.
Inter-Procedural Analysis. We only capture full execution be-
havior starting from a callee. Therefore, NeuDep primarily expects
instruction pairs to come from the same function. However, as we
trace the full execution behavior of method calls, our model poten-
tially learns to reason about the value flows across procedures. We
plan to explore NeuDep’s capability in inter-procedural analysis
by modeling the complete calling context in our future study.

7 RELATEDWORK

Binary Memory Dependence Analysis. There has been a long
history of efforts to approach the problem of analyzing memory de-
pendencies in executables [5, 6, 11, 16, 22, 34, 35, 71, 96]. Debray et
al. [22] and Cifuentes et al. [16] pioneered this field by using abstract
interpretation to propagate the abstract domain along the registers
of each instruction. VSA [5] improves on their idea by supporting

tracking value flows along both the registers and memory loca-
tions. DeepVSA [35] further improves on VSA by learning a neural
network to predict the memory-access regions of each instruction
to pre-filter those not sharing the regions. BDA [96] uses proba-
bilistic analysis to uniformly sample paths and performs per-path
abstract interpretation to avoid precision losses from path merg-
ing. While both DeepVSA and BDA sacrifice soundness, they have
been shown to significantly assist in debugging crashes [19, 58] and
malware analysis. However, they still incur high runtime overhead
and produce many false positives for optimized binaries – NeuDep
substantially outperforms these tools (§5).
Machine Learning for Program Analysis. Machine learning has
shown great promises in analyzing both source code and executa-
bles [3, 24, 62, 74] in tasks like type inference [37, 56, 61, 64, 70, 92],
code completion [10, 17, 43], program synthesis and genera-
tion [79, 88], program repair and fix [2, 26, 41, 80, 97], code sum-
marization [14, 21, 75, 84], general code representation [13, 39,
46, 51, 53, 89], bug/vulnerability detection [23, 48, 63, 73], code
clone detection and search [14, 32, 33, 42, 55, 66], code transla-
tion [72], comment suggestion [40, 52], and reverse engineering
tasks [7, 9, 45, 65]. Recent works have observed that incorporating
program behavior is beneficial to learning more effective program
representations [45, 60, 63, 64, 66, 89]. For example, Pei et al. [64, 66]
demonstrate that pretraining ML models with execution traces can
help the model understand the program’s operational semantics,
showing successes in detecting semantically similar binaries and
type inference under various code transformations [95]. However,
they have no support for data flow through memory and thus do
not model fine-grained value flows across memory operations. We
show in §5.2 that NeuDep’s new designs absent in these works are
critical to analyzing memory dependencies.

8 CONCLUSION

We present a new ML-based approach, NeuDep, to predict memory
dependencies. We first pretrain NeuDep to understand how instruc-
tions propagate dynamic values across memory and registers, then
finetune the model to detect memory dependencies statically. We
demonstrate that NeuDep is precise and efficient, outperforming
the state-of-the-art in both detection accuracy (1.5×) and speed
(3.5×). Extensive probing studies demonstrate that NeuDep under-
stands memory access patterns, learns function signatures, and can
match indirect calls – these tasks either assist or benefit from infer-
ring memory dependencies. Notably, NeuDep also outperforms the
state-of-the-art on these tasks.
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