
QUACK: Hindering Deserialization Attacks
via Static Duck Typing

Yaniv David∗, Neophytos Christou†, Andreas D. Kellas∗, Vasileios P. Kemerlis†, and Junfeng Yang∗
∗Columbia University †Brown University

Abstract—Managed languages facilitate convenient ways for
serializing objects, allowing applications to persist and transfer
them easily, yet this feature opens them up to attacks. By
manipulating serialized objects, attackers can trigger a chained
execution of existing code segments, using them as gadgets to
form an exploit. Protecting deserialization calls against attacks
is cumbersome and tedious, leading to many developers avoiding
deploying defenses properly. We present QUACK, a framework
for automatically protecting applications by fixing calls to deseri-
alization APIs. This “binding” limits the classes allowed for usage
in the deserialization process, severely limiting the code available
for (ab)use as part of exploits. QUACK computes the set of classes
that should be allowed using a novel static duck typing inference
technique. In particular, it statically collects all statements in the
program code that manipulate objects after they are deserialized,
and puts together a filter for the list of classes that should be
available at runtime. We have implemented QUACK for PHP
and evaluated it on a set of applications with known CVEs,
and popular applications crawled from GitHub. QUACK managed
to fix the applications in a way that prevented any attempt at
automatically generating an exploit against them, by blocking,
on average, 97% of the application’s code that could be used
as gadgets. We submitted a sample of three fixes generated by
QUACK as pull requests, and their developers merged them.

I. INTRODUCTION

A hallmark of most managed programming languages is
their memory safety: the language runtime tracks object sizes
and lifetimes to ensure that objects are always accessed within
bounds and are live (e.g., no use-after-free errors exist). Be-
sides eliminating memory errors, another major benefit is that
the runtime provides developers with APIs that automatically
serialize (and deserialize) an object into (and from) a low-level
representation. Deserialization is extremely useful because it
decouples the object’s lifetime from the program execution.
Developers can use it to persist objects—including all their
transitive fields—to files or databases, or transfer objects
between nodes for distributed or heterogeneous computing
(e.g., store/exchange machine-learning models [55]), all with-
out writing any (de)serialization code. A simple search on
GitHub reveals more than 5.4M PHP [17] and 10M Python
invocations of their respective deserialization APIs.

1 <?php
2 class MyClass {
3 private wrapped_object;
4 /* snip */
5 }
6 class MessageLogger {
7 // __wakeup gets automatically invoked when a
8 // MessageLogger object is unserialized
9 public function __wakeup() {

10 unlink($this->logFile);
11 }
12 }
13 // The developer intends to deserialize a
14 // MyClass object, but malicious input can cause
15 // a MessageLogger object to be deserialized
16 // instead, triggering unlink on an arbitrary
17 // path of the attacker's choosing
18 $myclass_obj = unserialize($serial_myclass);
19 /* snip */
20 >

Fig. 1: An example of PHP native deserialization risks.

By design, the class information of serialized objects is
stored within the serialized representation itself. This can
introduce vulnerabilities to applications that deserialize un-
trusted input, since attackers can provide malicious input
that creates objects of arbitrary classes when deserialized.
Attackers have devised various techniques that weaponize
these vulnerabilities. For example, in PHP, attackers exploit
deserialization vulnerabilities using the so-called Property-
Oriented Programming (POP) technique, where class proper-
ties are reused as gadgets and stitched together to construct
attack payloads [10], [59]. As the use of “gadget” implies, this
technique is similar to “gadget”-based code-reuse attacks on
native code (e.g., ROP [58]).

An example of one such vulnerability in PHP is illus-
trated in the code snippet in Fig. 1. The code contains
the definitions of two PHP classes: MyClass (line 2), and
MessageLogger (line 6). The MessageLogger class also
contains the definition of the __wakeup method (line 9),
which is a special-purpose PHP method that is automatically
invoked when an object of the corresponding class is deseri-
alized. Next, the code uses PHP’s native deserialization API
(i.e., unserialize in line 18) to deserialize the value of the
$serial_myclass variable, which the developer intended to
be a (serialized) instance of the MyClass class. However, if an
attacker controls the value of the $serial_myclass variable,
they can instead provide an input that deserializes to an object
of an arbitrary class of their choosing.

Network and Distributed System Security (NDSS) Symposium 2024
26 February – 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.241015
www.ndss-symposium.org

By providing a serialized instance of the MessageLogger

class and setting the logFile property of the serialized object
to a path of their choosing, the attacker can trigger a call to
the __wakeup method during deserialization (using it as a
“gadget”) and cause the deletion of an arbitrary file (line 10).

Developer guides and documentation warn against passing
untrusted input to deserialization APIs [47], but these warnings
are often ignored by developers, resulting in deserialization
vulnerabilities being a common issue, especially in web
applications. Specifically, the Open Worldwide Application
Security Project (OWASP) lists deserialization among the top-
10 vulnerabilities [40], factoring in the danger they pose
with the affluence of common vulnerability exposures (CVEs)
records citing them. In 2022 alone, 132 CVEs related to de-
serialization vulnerabilities were published, while the GitHub
advisory tracker lists 852 vulnerabilities of class CWE-502
(deserialization of untrusted data) [18]. The latter dataset ranks
Java, PHP, and Python as the top-3 affected languages (without
normalizing the number of projects). Unsurprisingly, these
vulnerabilities were also weaponized for large-scale attack
campaigns by malicious actors, such as APT41 [3].

To protect against deserialization attacks, deserialization
APIs allow developers to restrict what classes can be dese-
rialized at each API invocation by providing a list of allowed
or denied classes. Specifying a list of allowed classes can
be cumbersome, since developers must not only specify the
intended class of the deserialized object itself, but also the
classes of all its transitive fields (e.g., wrapped_object

in line 3 of Fig. 1), while taking into consideration classes
that are defined in different modules to the one containing
the invocation to the deserialization API. Similarly, when
deserializing a collection of objects (e.g., an array or a set), de-
velopers need to specify the possible classes for each element,
since failing to specify a single class will cause a runtime
error. An alternative approach to protect against deserialization
attacks would be to specify a deny list of classes that contain
methods that can serve as gadgets. However, the developer
would again have to scan the entire application code for such
classes, including all dependencies, since missing a gadget
class (e.g., MessageLogger in Fig. 1) can lead to exploitation.
To make matters worse, after the initial (allow or deny) list
is composed, any update to the application code or any of
the dependencies may require repeating this process to keep
the list up to date. Perhaps due to this cumbersome process,
developers rarely specify allow or deny lists when invoking
deserialization functions, which in turn leads to a plethora of
vulnerable applications. For instance, among the 5.4M PHP
invocations to deserialization APIs on GitHub, only ∼ 0.1%
(4.6K) specify an allow or deny list.

In this work, we focus our efforts on mitigating deserializa-
tion attacks in PHP, a prominent language for developing web
applications. We present QUACK, a system that automatically
mitigates deserialization attacks in PHP applications. QUACK
works by inspecting application code, detecting the usage of
deserialization APIs, and transforming the code to use the safer
allow-list-based variants of these APIs.

Our key insight is that by statically examining the code
that uses the deserialized object, we can automatically infer
a comprehensive list of allowed classes, relieving developers
from the strenuous and error-prone manual code inspection.
Moreover, even though we implement QUACK for PHP, we
believe that this key idea can be the basis for deserialization
defenses for other languages (e.g., Python, Java).

The primary challenge QUACK faces is automatically in-
ferring a precise list of allowed classes. QUACK cannot rely
on developer-declared types for the variables receiving the
deserialized objects: since PHP is an interpreted language,
type information is often not present because declaring types
in the code is not supported (PHP v5) or is optional (PHP v7
and above). Inferring classes based on how the deserialized
objects are used shares similarities with classic type inference,
but existing algorithms are unsuitable for QUACK, since they
are often designed to infer a precise type for each variable,
and usually favor shallow, conservative methods that either
infer one precise type, or are unable to infer any types if
there is more than one candidate type. As our evaluation
shows (Section VIII-D), existing type inference cannot infer
the classes for all but one deserialized object.

QUACK solves this inference problem using a novel static
analysis process. For each deserialization call, QUACK first
constructs a sound overapproximation of all classes that are
available at the call site, accounting for the dynamic nature of
PHP’s class loading logic. Next, it filters the list of available
classes by employing novel interprocedural, context-sensitive,
and flow-sensitive algorithms to track how deserialized objects
are used, constructing a final list of allowed classes, which is
then provided to the deserialization API. The idea is inspired
by duck typing in languages such as Smalltalk and Ruby
where all that matters, from a types perspective, is that the
object responds to the methods called on it—QUACK infers
the potential types purely statically.

We implemented QUACK and evaluated its effectiveness
and performance on a dataset of 15 deserialization vulner-
abilities in 10 popular applications including CakePHP, the
defacto model-view-controller framework for PHP. Our results
demonstrate that QUACK effectively blocks all gadgets for
80% of the vulnerabilities. For the remaining vulnerabilities,
QUACK greatly reduces the number of gadgets available to
an attacker by 84%. QUACK prevents all exploits generated
by FUGIO [41], a state-of-the-art (SOTA) POP exploit gen-
eration tool, for all evaluated applications in our dataset.
Furthermore, we sampled three PHP applications containing
calls to deserialization APIs and submitted anonymized pull
requests (PRs) including the suggested fixes generated by
QUACK. All PRs were merged by their developers, most of
them in under 12 hours, validating QUACK’s usefulness. In
terms of performance, QUACK carries out its analysis of each
vulnerability in 193 seconds on average (max 362 seconds)
on a commodity laptop, making it suitable for practical use
in DevOps cycles. QUACK’s code and other evaluation-related
resources are available at https://github.com/columbia/quack.

2

https://github.com/columbia/quack

II. BACKGROUND

Programmers have needed to serialize abstract data types
(ADTs) since the early days of TCP/IP standardization [25].
In the time since, use cases have become more complex, and
it has become challenging to balance functionality with ease
of use. In the paper describing the design and implementation
of the Java runtime serialization [64], the authors note that
“support for identifying and authenticating classes is a basic
requirement and is outside the scope”. As the popularity of
languages supporting serialization grew, security researchers
found ways to turn this small design flaw into a tool for remote
code execution.

A. Serialization and Deserialization

Programmers often need to save the persistent state of an
object and restore it for later use. They may wish to store
the object in a database or send an object across a network
connection between a client and server to be reconstituted
on the remote end; or, for a recently popular example, pro-
grammers may share trained machine-learning models that are
represented as program objects [55], [59]. To facilitate these
use cases, managed programming languages typically provide
built-in native APIs for object serialization and deserialization.

Broadly, serialization refers to the task of converting an
object into a representation that can be saved and transmitted,
which we refer to as the serialized object. Deserialization
refers to the complementary task of reading a serialized object
and converting it back into an object in a program’s executing
runtime, which we refer to as the deserialized object. Different
programming languages may have different terms for the
functions that provide serialization support.

Serialization APIs can differ in the expressive power of
the objects that can be serialized and deserialized. Some
APIs can only deserialize serialized objects into primitive
object types, like arrays, strings, and integers; examples in-
clude Python’s json encoder/decoder module [51] and PHP’s
json_encode() and json_decode() functions [44]. Other
serialization APIs provide rich and complex object repre-
sentations that can represent class objects, execute methods,
and potentially evaluate arbitrary code, like Python’s pickle
module [52], PHP’s serialize() and unserialize()

functions [47], and Java’s Object Serialization feature [38].
Even the simpler (de)serialization APIs can be vulnerable
to attacks [51], and, unsurprisingly, the more powerful APIs
provide attackers with more tools with which to craft more
sophisticated exploits.

PHP provides a powerful serialization API that allows
programmers to represent class objects and to invoke object
methods during deserialization [47]. Fig. 2 shows an example
of the output produced by serializing a PHP object, wherein
the name of the class, and the values of its properties, are
encoded. When the serialized string shown in Fig. 2 (lines 22–
24) is passed as a parameter to the unserialize function,
the function returns an initialized MessageLogger object with
the properties encoded in the string.

1 <?php
2

3 class MessageLogger {
4 private string $logFile = "/tmp/log.txt";
5

6 function __wakeup() {
7 // Reset log file on wakeup.
8 unlink($this->logFile);
9 }

10

11 function logMessage(string $message) {
12 $fd = fopen($this->logFile, "a");
13 fwrite($fd, $message);
14 fclose($fd);
15 }
16 }
17

18 $logger = new MessageLogger();
19 $serialized_object = serialize($logger);
20 print($serialized_object . "\n");
21 // Output:
22 // O:13:"MessageLogger":1:{
23 // s:22:"\x00MessageLogger\x00logFile";
24 // s:12:"/tmp/log.txt";}

Fig. 2: Serializing a MessageLogger object produces a
string that encodes the property values of the object. In this
example, the serialization string encodes that the object is
a MessageLogger object with a logFile property set to
/tmp/log.txt.

PHP’s deserialization API provides programmers with some
control over methods that are invoked during deserialization.
PHP reserves some method names for magic methods, which
are special methods that override PHP’s default behavior when
certain actions are performed on an object [45]. Some relevant
magic methods are __wakeup and __sleep, which are called
when an object is deserialized and serialized, respectively, and
__destruct, which is called automatically when an object
no longer has references to it. __wakeup can be used for
re-initializing the object state in the deserialized object by,
for example re-establishing a database or network connection
for the new object. By implementing a __wakeup method
for a class, a programmer ensures that the method is called
whenever the object is deserialized.

As an extension to the deserialization API, PHP also
provides the ability to embed serialized metadata in PHP
Archive (PHAR) files [6] used for distributing PHP appli-
cations. In PHP versions before v8, when file system oper-
ations (e.g., file_exists and is_dir) are passed a path
to a PHAR file prefixed with the PHAR stream wrapper
(e.g., phar://app.phar), the PHAR file may contain serial-
ized metadata that is read from the file and deserialized.

Deserialization APIs also differ between languages in
which classes are available for deserialization, e.g., Java
only allows deserializing classes that implement the
java.io.Serializable interface, while PHP implicitly re-
quires that the class be loaded into the interpreter at the time
of the deserialization.

3

B. Deserialization Vulnerabilities and Exploitation

Documentation for deserialization APIs frequently warns
programmers to never pass untrusted user inputs into dese-
rialization functions [47], [51], [52]. Despite these warnings,
programmers continue to write applications and frameworks
that allow user inputs to reach these functions, resulting in
hundreds of security weaknesses every year. Fundamentally,
when untrusted user inputs are deserialized, arbitrary objects
are created and inserted into the program’s execution runtime
environment. Attackers can leverage the properties of unin-
tended objects to cause the program to reach unsafe states.

The risks posed by arbitrary object deserialization depend
on the specifics of how the language deserialization implemen-
tation treats deserialized objects, and the power of the dese-
rialization API. Deserialization implementations are broadly
susceptible to arbitrary-object-injection attacks, wherein an
unintended object is deserialized and confused for an object
of a different type, or with data attributes that should not be
permitted. Some implementations introduce the additional risk
of direct arbitrary command execution by providing command
execution as a feature of the deserialization routine; for exam-
ple, the deserialization function may call custom initialization
handlers of the deserialized object, or even allow for the
execution of code injected in the serialized object.

Exploits for deserialization vulnerabilities fit broadly into to
following three categories:

1) Data-injection attacks: a deserialized object is of the
intended type, but has data attributes set to unintended
values. Any deserialization API can be vulnerable to
these attacks, even those that only represent primitive
types like arrays and strings.

2) Type-confusion attacks: a deserialized object is of an
unintended type. This category of attacks may also
include gadget-based type-confusion attacks, such as
Property Oriented Programming (POP) attacks in PHP.

3) Arbitrary-command-evaluation attacks: When ex-
posed to attacker-provided data, the deserialization rou-
tine can be leveraged to evaluate this data as code or
be guided toward executing an arbitrary set of existing
class methods or functions.

Not every language deserialization API allows for all three
categories of deserialization attacks. Generally, data-injection
attacks are allowed by any deserialization implementation that
does not provide data integrity checks, including many JSON
encoding and decoding routines. Type-confusion attacks are
allowed by any deserialization implementation that allows for
the instantiation of arbitrary objects, like PHP’s unserialize
function. Finally, arbitrary-command-evaluation attacks are
allowed only by deserialization implementations that allow
code evaluation during deserialization, like Python’s pickle

module. For example, PHP’s unserialize native function
allows for data-injection and type-confusion deserialization
attacks, while Python’s unpickle function allows for all three
categories of attacks: apart from allowing the first two cate-
gories, it also enables arbitrary-command-evaluation attacks by

1 O:13:"MessageLogger":1:{
2 s:22:"\x00MessageLogger\x00logFile";
3 s:9:".htaccess";}

Fig. 3: String that encodes a MessageLogger object with
attributes logFile = “.htaccess”. When this string is
deserialized and the MessageLogger __wakeup method is
called, the security-critical .htaccess file is deleted.

providing functionality to directly evaluate Python code repre-
sented by data in the serialized object during deserialization.

1) Data-injection attacks: A data-injection attack occurs
when an attacker-controlled string is deserialized into an object
of the intended type, but with an attribute data set such that
the attacker can cause undesired effects.

For example, recall that the string output in Fig. 2 encodes
an object of type MessageLogger with property logFile =

“/tmp/log.txt”. If an attacker can control the string passed
to the unserialize function, they can change the input
string to instead be the one shown in Fig. 3, which encodes
a MessageLogger object with logFile = “.htaccess”.
When the string is deserialized, the __wakeup method is in-
voked and the .htaccess file—which often contains security-
related settings for web applications—is deleted. By being
able to control the value of the logFile property when a
MessageLogger object is deserialized, the attacker has an
arbitrary-file-delete primitive.

Generally, opportunities to carry out data-injection attacks
are infrequent, because they are dependent on class properties
and the application logic that surrounds the vulnerable de-
serialization routine. In our analysis of exploits against PHP
CVEs, we did not observe any data-injection attacks.

2) Type-confusion attacks: Type-confusion attacks are a
broad class that generally applies to many kinds of vulner-
abilities beyond just deserialization vulnerabilities, like use-
after-free vulnerabilities in C and C++ programs [35], [60]. In
the context of deserialization vulnerabilities, a type-confusion
attack occurs when an attacker deserializes an object that is
of an unintended type.

Fig. 1 is an example of a type-confusion attack, wherein
a developer intends for the deserialized object to have
type MyClass, but the attacker instead can create a
MessageLogger object by controlling the input string to
unserialize. Unlike data-injection attack, the deserialized
object was not intended to be a MessageLogger type, and
the attack could have been prevented if the intended type
of the deserialized object was enforced. To carry out the
attack, the attacker only has to ensure that the target class
(i.e., MessageLogger) is available in the runtime environment
at the time of deserialization—i.e., the class is either declared
in the module containing the call to unserialize, or the
module containing the class is included statically (e.g., using
require), or autoloaded dynamically).

As with data-injection attacks, finding a single class that,
when deserialized, provides a powerful enough exploit primi-
tive by itself, is uncommon.

4

Instead, attackers have developed Property-Oriented Pro-
gramming (POP) exploitation technique [12], [14], [41], [54],
which works by chaining together functionality from methods
of different objects, called gadgets. To carry out a POP
attack, an attacker first constructs a top-level object of a
class containing a magic method (e.g., __wakeup), which,
in turn, may call methods of other nested objects contained
as properties in the top-level object. Effectively, this magic
method serves as the first gadget that starts the execution of the
POP chain. Next, the attacker identifies classes implementing
methods invoked by the aforementioned magic method and
instantiates objects of these class types as properties of the
top-level object. When this malicious object is deserialized and
the initial magic method is invoked, it will trigger a chain of
nested type-confusion attacks, each one executing some small
component of the attacker’s full attack. While POP chains are
seemingly complex, security researchers have developed tools
to automatically identify candidate POP gadgets to build POP
chains [15], [41], [57] and create catalogs of common POP
chain gadgets for creating powerful primitives. Essentially,
POP exploitation is a specialization of the broader type-
confusion category of deserialization attacks.

All PHP deserialization attacks that we observed fall under
the type-confusion attack category. Most languages’ deseri-
alization implementations are vulnerable to type-confusion
attacks, although the specific requirements for a successful
attack vary by language. We designed QUACK to mitigate
PHP’s type-confusion attack class.

3) Arbitrary-command-evaluation attacks: Some
languages’ implementations of deserialization routines
expose powerful APIs to evaluate arbitrary commands. For
example, Python’s pickle module represents serialized
objects as bytecode instructions and implements a virtual
machine that executes those instructions when deserializing
the object [52], [59]. Notoriously, the virtual machine
provides opcodes that interface to call Python’s eval

function on serialized data, which provides a simple yet
powerful mechanism for attackers to execute arbitrary code.
Most Python deserialization attacks are arbitrary-command-
evaluation attacks, because of the attack’s simplicity when
compared to data-injection or type-confusion attacks.

C. Mitigating Deserialization Attacks

Despite warnings in developer documentation, deserializa-
tion vulnerabilities persist, attracting more and more attention
from the security research community. In response, language
developers have made attempts to increase the visibility of
warnings and to give programmers some control over the types
allowed to be deserialized.

As an example, PHP v7 introduced an optional
allowed_classes parameter to the unserialize function
to restrict the types of the objects that are allowed to be
deserialized at the call site [47]. This provides an effective
mechanism for preventing type-confusion attacks in PHP.
However, our analysis shows that this optional parameter
is rarely applied, since it requires additional developer

awareness and effort. The mitigation is so rarely applied that
some POP gadget detection tools do not even bother to model
its semantics when searching for potential POP gadgets for
attacks [41]. Proper use of the allowed_classes parameter
applied to the unserialize call in Fig. 1 would prevent an
attacker from deserializing a MessageLogger object:
unserialize($data, ['allowed_classes'=>['MyClass']])

As a further mitigation, in PHP v8, the default behavior
of file operation functions that interact with PHAR file for-
mats (described in Section II-A) was changed so that PHAR
metadata is not automatically deserialized. Instead, PHAR
metadata is only deserialized when the programmer explicitly
requests it with a Phar::getMetadata method, which now
also supports an allowed_classes optional parameter [50].

Java also provides a mechanism for restricting the allowed
classes available at deserialization time, called a serialization
filter [39]. Unlike PHP, which provides the unserialize

function and which acts as a single vulnerable call site
to protect, Java classes are serialized by implementing the
Serializable interface. This makes filtering the allowed
classes more onerous because each serializable class has its
own serialize methods. Java provides two mechanisms for
filtering: a) through a JVM-wide filter that is applied to every
deserialization in the JVM, and b) through a stream-specific
filter that needs to be implemented for the classes they protect.
Filters are pattern-based, and so can be either allow-lists or
deny-lists. This all results in an interface for filtering allowed
classes that is very configurable, but which is very tedious and
challenging to implement.

Mitigations like PHP’s allowed_classes and Java’s se-
rialization filters are not frequently applied, resulting in the
continued exploitation of deserialization vulnerabilities. One
of the reasons for that is the lack of support from integrated
development environments (IDEs) and other analysis tools in
inferring which classes should be allowed.

D. Inferring Allowed Classes

In programming languages theory [13], the general goal of
classic type inference is to check that typing rules are satisfied,
or report type errors otherwise. This is typically done by
collecting all typing facts such as literals and declarations, and
propagating them through data-flow chains to detect conflicts.
Classic type inference is thus not targeted enough to infer just
the type/class of one deserialized object. In gradually typed
languages, like PHP, the effectiveness of classic type inference
is limited by the number of facts and type hints in declarations
to build upon. For instance, a classic type inference algorithm
would collect the mixed return type of unserialize as a fact
from its declaration, and this fact would never conflict with
any other, as mixed is a union of all possible types. From our
experience, this is exactly what happens in commercial IDEs
such as PhpStorm [27] and static analysis frameworks such
as noverify [62]. As we show in our ablation study, only in
one case there was a type declaration that allowed for direct
type-inference to recommend the relevant allowed classes.

5

III. THREAT MODEL AND LIMITATIONS

This section describes the threat model according to which
QUACK is designed. It also describes the limitations of QUACK
when operating in this threat model.

A. Adversarial capabilities

We assume an attacker with full control over a serialized
object used as input to the deserialization API. Examples of
such attacks include: (1) sending an HTTP GET request to a
web application followed by the web application passing some
part of the HTTP data directly to a deserialization routine [3],
[34], [36], and (2) an attacker uploading a manipulated pre-
trained machine learning model which is later deserialized to
be used in a system using this model for inference [55], [59].

We also assume the attacker has precise knowledge of the
application and library code installed on the attacked entity,
allowing them to craft the serialized object to realize an exploit
of their choosing.

B. Hardening Assumptions

QUACK is designed to stop deserialization-based exploita-
tion performed via type-confusion attacks, considering the
other attack categories, data-injection-only and arbitrary-
command-evaluation, out of scope.

Similarly to the attacker, QUACK requires full and precise
access to the application and library code. Specifically, QUACK
cannot be used to suggest generic protection for a library
without the full context of the application using it.

QUACK does not rely on the PHP runtime to implicitly
block exploits from using gadgets in classes that might not
be available as they were not loaded in the current session.
Instead, QUACK collects the minimal available classes and
explicitly bars other classes from being instantiated during the
deserialization process.

C. Limitations

PHAR As described in Section II-A, in PHP versions prior to
v8, the application may be exposed to deserialization vulnera-
bilities when file operations implicitly deserialize metadata of
PHAR file objects. While PHP 8.0+ is not widely deployed
yet, applications using PHP 8.0+ are not vulnerable to this
attack, since metadata is only deserialized explicitly in the
application code. Being future-driven, we consider the implicit
PHAR metadata deserialization (for PHP versions before PHP
v8) out of scope. While it was not part of our evaluation,
QUACK can be extended, using the same analysis, to suggest
allowed_classes for PHAR’s getMetadata method in the
same way that it does for calls to unserialize.
Unresolved dynamic behavior QUACK can soundly handle all
PHP’s static features and provides partial support for several
of its dynamic features while alerting the user when a non-
supported case is encountered. PHP has many dynamic fea-
tures rendering precise static analysis prohibitively complex.
Hills et al. [21] provide a useful catalog of PHP’s dynamic
features, and show that many of these features are not used in
practice or are unnecessarily used to implement much simpler

static patterns, although some features are used to implement
dynamic behavior that can not be resolved statically. QUACK
handles magic methods using over-approximation, and pro-
vides partial support for dynamic inclusion and registered
autoloaders (Section V). In the cases of unsupported imports
and dynamic invocations, QUACK issues an alert that stops
the analysis and outputs the currently allowed classes as the
sound (yet probably imprecise) result. Examples of dynamic
invocations are shown and discussed in our evaluation Sec-
tion VIII-B. Moreover, QUACK performs the allowed classes
inference based on the assumption that the use patterns of the
deserialized object are available. This assumption is broken
for cases where the object is partially updated.

IV. OVERVIEW

Deserialization vulnerabilities are exploited by creating ob-
jects with properties that the programmer did not intend to
exist in the application. Deserialization APIs create a larger
attack surface by allowing more object types to be accessible
than is necessary. If the deserialization APIs can be restricted
to only allow the programmer-intended classes, then the attack
surface is significantly reduced. This section provides an
overview of how QUACK automatically determines which
classes should be allowed during deserialization, in order to
restrict the set of classes available to an attacker.

A. Motivating Example

As a motivating example, we will use a real-world vulnera-
bility (CVE-2014-2294) affecting Open Web Analytics v1.5.6,
seen in the snippets in Fig. 5. In this example, a user-provided
input ($raw_event) is passed to the unserialize function
(line 9 in Fig. 5a), allowing an attacker to carry out a type-
confusion POP attack, as described in Section II-B2. In fact,
the FUGIO [41] exploit generation tool is able to synthesize 14
unique exploits against this vulnerable application, all granting
the attacker the ability to manipulate files by chaining methods
from multiple classes.

If the intended type of the $event object could be dis-
cerned, then the allowed_classes parameter could be used
to restrict which classes can be deserialized, potentially re-
moving classes needed by POP chains. However, there is no
type information available in the vulnerable code. In order to
infer the allowed classes for the deserialized object, additional
context needs to be used, by observing how the object is used
and what properties are expected of it.

B. Using QUACK to Protect Deserialization APIs

QUACK is built on the insight that the intended type of
the deserialized object can be inferred by statically observing
how the object is used after deserialization. An overview of
QUACK’s process is shown in Fig. 4. First, QUACK conducts
its analysis step to identify the calls to unserialize and
determine the set of available classes at each call site. Then,
in the deserialization protection step, QUACK computes and
applies the allowed classes constraints by rewriting each call
site with a safe API call, resulting in the protected application.

6

Fig. 4: Overview of QUACK’s analysis process. First, QUACK conducts the analysis step to identify calls to deserialization
APIs, determine the set of available classes at the call site, and infer the intended set of allowed classes for the deserialized
object. Then, it protects the application by rewriting the vulnerable call sites to restrict the allowed classes and produce safe
deserialization calls.

1 <?php
2

3 /* snip */
4

5 $owa = new owa_php();
6 $raw_event = owa_coreAPI::getRequestParam('event');
7

8 $dispatch = owa_coreAPI::getEventDispatch();
9 $event = unserialize(base64_decode($raw_event));

10 $dispatch->notify($event);

(a) queue.php
1 <?php
2

3 class owa_eventDispatch {
4

5 function notify($event) {
6 owa_coreAPI::debug("Notifying listeners of"
7 . $event->getEventType());
8 /* snip */
9 }

10 }

(b) eventDispatch.php
1 <?php
2

3 class owa_event {
4

5 function getEventType() { /* snip */ }
6 }

(c) event.php

Fig. 5: Code from Open Web Analytics v1.5.6 containing the
deserialization vulnerability CVE-2014-2294.

In the example in Fig. 5, QUACK is able to determine
the set of allowed classes observing how the $event ob-
ject is used. After being assigned the return value of the
unserialize call, the $event object is passed as an ar-
gument to the notify method of the $dispatch object
(line 10 in Fig. 5a). This first step of the type inference
process can also be performed using a traditional tool,
as owa_coreAPI::getEventDispatch() is a call to a
static method whose return value’s type can be inferred,
revealing that the $dispatch object is an instance of the
owa_eventDispatch class. The next step requires the use of
our novel static duck typing technique. The notify method
(line 5 in Fig. 5b) accepts $event as an argument and calls

its method, getEventType. However, no other type infor-
mation is available or can be directly inferred in traditional
approaches. On the other hand, QUACK uses the evidence from
the call to $event’s method getEventType to filter the set
of available classes and determine that class owa_event is the
only one with method getEventType, and hence $event is
intended to be of type owa_event (shown in Fig. 5c).

QUACK then rewrites the call to unserialize to take the
optional allowed_classes parameter with the set of allowed
classes created during the analysis step:
$event = unserialize(base64_decode($raw_event),

['allowed_classes' => ['owa_event']]);.
When the allowed_classes parameter in this example is
set to [’owa_event’], the 14 POP chain exploits generated
by FUGIO are completely mitigated, since all require classes
other than owa_event in their exploit chains. This effectively
mitigates the exploitation of any type-confusion attacks.

As illustrated by this example, QUACK is able to determine
the set of available classes at the time of an unserialize

call, and restrict that set to allowed classes by observing how
the deserialized object is used. This allows QUACK to infer the
intended type (or set of types) of the deserialized object, and
rewrite the unserialize call to also pass the allowed_classes
parameter with the inferred set of allowed classes, protecting
the application from type-confusion deserialization attacks.

V. PROTECTING DESERIALIZATION VIA STATIC DUCK
TYPING

In this section, we describe the design of the static duck-
typing type inference technique used by QUACK. This tech-
nique works by starting from the set of available classes at
each deserialization call site, and applying filtering steps based
on object use patterns collected from the code to infer the
set of allowed classes. We first describe a slightly simplified
version of collecting all the locations where the deserialized
object is used, then detail the PHP-specific rules for collecting
evidence from each using location, and finally discuss the
required complication to support edge cases.

Deserialization mapping Given an application containing calls
to a deserialization API, QUACK first parses all its files, and
transforms them into their abstract syntax tree (AST).

7

Traversing the ASTs allows for detecting all call statements
that might target deserialization APIs, denoted as DSCStmts.
To support cases where the same object is deserialized in
multiple locations, and in each location a different part of the
deserialized object is processed, QUACK tracks the uses of all
serialized objects. To perform this tracking, QUACK creates
a mapping between objects containing a serialized object, to
all the points in the program where they are deserialized.
After QUACK computes the set of allowed classes for each
deserialization call, the mappings will be combined:

Deserializations : SerObjs → DSCStmt → AllowedClasses

Algorithm 1: GetAllowedClasses
Input: DSCStmt – Deserialization Call Statement

Output: AllowedClasses – The set of allowed classes
1 AllTracked := EmptySet()
2 CurTracked := EmptySet()
3 AllowedClasses := EmptySet()
4 CurTracked + = Def(DSCStmt)
5 AvailableClasses :=

AvailableClassesAtStmt(DSCStmt)
6 while NotEmpty(CurTracked) do
7 Tracked := POP(CurTracked)
8 if Tracked ∈ AllTracked then
9 Continue

10 AllTracked + = Tracked
11 foreach CUStmt ∈ Uses(Tracked) do
12 AllowedClasses + =

EvidenceFromStmt(CUStmt,
Tracked,AvailableClasses)

13 CurTracked + = Def(CUStmt)

To populate Deserializations, QUACK applies the pseudo-
code algorithm in Algorithm 1 to all members of DSCStmts.
For each member, DSCStmt, Algorithm 1 returns Allowed-
Classes, the set of classes possibly deserialized at DSCStmt.

Informally, Algorithm 1 performs a comprehensive data-
flow analysis, collecting all statements in the program using
deserialized data. This collection is achieved by tracking all
direct uses, and transitive uses of variables assigned the whole
or part of said data, via class field or collection member access.
Algorithm 1 uses the Def-Use terminology used in program
slicing to express how different statements read from and
write into the program’s variable, expressed as calls to helper
routines (Uses() and Def()) [63]. For example, for S =$a =

$b + $c, Def(S) = $a, and Uses(S) = $b, $c. Other helper
routines will be explained next as they are used.

In lines 1–3, three sets are initialized to track: all processed
objects (AllTracked), the objects left to process (CurTracked),
and the resultant allowed classes (AllowedClasses). The first
two sets are required to ensure every object is processed only
once, thus ensuring termination.

In line 4, the deserialization API call statement is analyzed
so that the variable representing the newly created deserial-
ized object is added to the CurTracked set to be analyzed
first. In line 5, QUACK collects all classes that are available
(i.e., can be loaded) at the deserialization call site (described
in Section VI), to populate AvailableClasses. The rest of
Algorithm 1 contains a while loop iterating over the depleting
and refilled CurTracked set, analyzing them one by one. Lines
7–10 implement the termination assurance described above. In
lines 11–13, all the statements using the current tracked object
are iterated over (line 11) to extract all usage evidence (line 12)
and repopulate as required all other assigned objects (line 13).
Usage evidence collection, EvidenceFromStmt, accepts 1)
the current statement, 2) the object holding the deserialized
data, and 3) the set of allowed classes in the deserialization
call location that are all used for this process, and returns the
set of classes that are possibly legally deserialized and thus
must be allowed to deserialize. This output is added to the set
of AllowedClasses.

Next, we provide the details for EvidenceFromStmt.
To simplify the explanation, and without loss of
generality, in Algorithm 1 we assume the result of the
deserialization API is assigned directly to a variable,
e.g., $a = unserialize($input). In practice, to
support the realistic cases where the returned object
is part of a more complex expression, e.g., $a =

(SomeClassCast)unserialize($input), we apply
a variant of EvidenceFromStmt to DSCStmt as well.

Extracting class evidence from statement Algorithm 1 con-
structs a set of statements that contain evidence of different
classes contained in the deserialized object, which will help
QUACK construct the set of allowed classes for said object.
QUACK performs this class evidence extraction process using
a set of pre-defined rules, applying exact or duck-typing
matching logic. Table I contains the main rules used by
QUACK for this purpose. Every row describes a rule. The first
column lists the rule match type (i.e., exact or duck-typing),
the second lists the partial statement matching criterion, and
the third contains the used classes collected, while t denotes
the currently tracked value from Algorithm 1. Exact matching
returns a specific type for the object and relies on the explicit
type being present in the code, such as the (known or deduced)
type of a function argument, or an explicit cast of the value
to a certain type. For duck-typing matching, QUACK does not
return a specific type, but instead returns a set of possible types
by filtering the list of available classes (AvailableClasses in
Algorithm 1), based on the relevant evidence from the code.

Demands from the underlying static analysis QUACK as-
sumes the existence of an underlying program analysis to
perform data-flow tracking and other operations described in
Algorithm 1. Specifically, QUACK relies on these tools to
detect aliasing and include them in the Uses operator. Ideally,
the aliasing will be precise, i.e., only including symbols when
the relevant value is assigned (possibly by renaming, or a static
single assignment (SSA)-based approach).

8

TABLE I: Statement matching rules used by QUACK to collect used classes evidence from statements. Exact or duck-typing
rules are applied to the relevant statements to construct the allowed class set.

Rule Type Partial Statement Matching Rule Possible Classes

Exact

FunctionX(arg1, argi−1, t, argi+1, ...) TypeOf(FunctionX’s argi)
ClassXInstance→MethodX(arg1, argi−1, t, argi+1, ...) TypeOf(ClassX→ MethodX’s argi)
(TypeName) t TypeName
Expr ? t : a (or symmetric case) TypeOf(a)

Duck Typing

t->MethodX(...) Classes with a method named ‘MethodX’
t.FieldX Classes with a field named ‘FieldX’
t <BinaryOp>a Types allowing <BinaryOp>(e.g., "+" or ">=") with TypeOf(a)
t<Op> (or symmetric case) Types allowing Op (e.g., "++")
t[offset or key] Types compatible with slicing
a <AssignOp> t Types allowing <AssignOp>(e.g., +=) with TypeOf(a)
switch (t): case (a) Types allowing equality check against TypeOf(a)

Another option to trade off performance with precision is
using a k-bound inter-procedural analysis, possibly performed
lazily on the parts of the code where a deserialization API
is called. When such a k-bound approach is applied, escape
analysis can support the case where the k’th procedure is
reached to know if the tracking is stopped, and assign the
statement a ⊤ value.

Separating evidence by object We now examine how
our suggested approach deals with deserialized objects that
wrap (i.e., contain references to) other objects. When an
object, $a, contains a reference to another object, $b

(stored as an array member or a class property), seri-
alizing $a (e.g., $ser = serialize($a)) will result in
$ser containing both $a and $b. Now, consider the
following code snippet: $a = unserialize($ser);$b =

$a->somefield; $b->foo(). This code snippet will trigger
two EvidenceFromStmt calls: the first call will resolve and
collect $a’s type (using somefield) and start tracking $b,
and the second will do the same for $b’s type (using foo). If
the classes corresponding to both objects are not specified in
allowed_classes, the deserialization of $a will fail.

Alas, while this approach provides a simple way to deal
with wrapped objects, it might introduce false positives. For
example, the following code snippet: $z->zoo();$z->bar()
will result in the first use adding all classes with zoo, while
the second does the same for bar. A more precise result will
include only classes that have both the zoo and bar methods.
Thus, instead of performing separate evidence collection for
each use (as described in Algorithm 1), QUACK collects
evidence from all the uses of a specific object together.
Namely, for the code snippet above, QUACK will add classes
that have zoo and bar methods to the set of allowed classes.

Dealing with magic methods QUACK deals with PHP’s magic
methods by over-approximating behavior for classes that im-
plement them. PHP’s magic methods allow class authors to
add dynamically defined semantics to several basic actions
performed on the class. QUACK collects information about
classes that contain them and expands all evidence-collection
rules to over-approximate them to fit the specific dynamic
behavior allowed by the magic method. For example, if a
class implements the __get magic method, which allows
implementing logic for fetching non-existing properties from

a class, it will cause any field-matching duck-typing rule
(i.e., the second Duck Typing rule in Table I) to return this
class as well, even if it does not contain the fetched property.

Fixing deserialization calls QUACK uses the populated
Deserializations map to fix the deserialization APIs in it.
Specifically, for each deserialization statement, it restricts the
classes that are allowed to be deserialized to the ones in the
AllowedClasses set constructed for the statement.

VI. STATICALLY COMPUTING MINIMAL GUARANTEED
DESERIALIZATION-AVAILABLE CLASSES FOR PHP

In this section, we describe the class loading process per-
formed by the PHP interpreter, and how we use its rules to
calculate the minimal set of classes that are guaranteed to
be available at different locations of a PHP program. This
calculation provides the initial class set used by QUACK’s
static duck typing inference technique described in Section V.

A. Class loading in PHP

For a given file, besides the classes defined in it, PHP
provides two methods for loading1 additional classes defined
in other files. The first method is explicit, using the include

or require2 directives [43]. These directives, followed by
the path to the file to include, cause the mentioned file to be
loaded. Note that include directives and class definitions can
be specified anywhere in the file.

Secondly, PHP also allows developers to specify custom
dynamic autoloaders [42], which might trigger implicit class
loads. When a class that is not loaded is referenced, PHP
will call all currently registered autoloaders, which will try to
dynamically locate and load the file containing the class defi-
nition. Even though autoloaders can implement arbitrary logic
for locating a file containing the definition of a non-defined
class, they are often implemented according to specifications
published by the PHP Framework Interop Group [2] called
PHP Standard Recommendations (PSRs), e.g., PSR-4 [49].

An autoloader implementing the PSR-4 specification
attempts to locate class definitions based on a mapping
between a PHP namespace [46] (e.g., MyNamespace\Foo) and

1We use the term ‘loaded’ for a class to indicate the class definition was
parsed and its code was executed by the interpreter.

2We will henceforth use include to refer to include or require.

9

a project subdirectory (e.g., src/dir). When a non-loaded
class belonging to the specified namespace is referenced
(e.g., MyNamespace\Foo\MyClass), the autoloader will
look for a PHP file matching the class name under the
specified subdirectory (e.g., src/dir/MyClass.php).
If such a file exists, the autoloader will load it using
the include directive. If the class contains sub-
namespaces (e.g., MyNamespace\Foo\Bar\MyClass),
the sub-namespaces are converted to subdirectories
(e.g., src/dir/Bar/MyClass.php). A PSR-4 autoloader
is provided by the Composer dependency manager [1],
a commonly used dependency management tool for PHP
projects. A project using Composer defines mappings
between namespaces and directories in a JSON file, and
Composer automatically generates an autoloader in a file
named vendor/autoload.php. The generated autoloader
loads classes based on the PSR-4 specification using the
developer-specified mappings.

B. Constructing and Traversing the Class-Def-Graph

The class-def-graph (CDG) is a directed graph representing
the include-relations and class-definition locations in a PHP
application. QUACK creates the CDG to statically compute an
over-approximation of the classes that can be loaded by the
interpreter at every line of the application. This set includes
not only all the classes that were intended to be deserialized,
but also all the classes that are available to an attacker at
each deserialization call site, and can be used to carry out
the type-confusion attack described in Section II-B2. Thus,
the soundness of the analysis creating this set is crucial to
the success of QUACK’s operation. The CDG nodes represent
files in the code, annotated with classes loaded by these files,
and its edges represent dependencies on other files using
either explicit or implicit connections. QUACK deals with class
definitions and include directives by considering all classes
and recursively following all include directives regardless of
their location in the file. Fig. 6 presents a CDG graph, which
we will use as a running example to explain QUACK’s process
for creating an CDG, and using the CDG to determine the
set of available classes at each deserialization call site. The
graph contains seven files: A1, A2, B, C, D1, D2, and E

(all with a .php postfix).
Constructing the CDG To construct the CDG, QUACK first
adds nodes to the graph, and then analyzes the code to
add the edges. First, QUACK parses each file into its AST
representation and looks for AST nodes representing include

or require directives. For each directive, the argument con-
taining information about the path to include needs to be
resolved into a file path that is the target of the directive.
If the argument is a static string literal (or a composition of
these), it is used as is. Otherwise, QUACK attempts to resolve
the path using pattern matching and rule-based approaches
suggested by previous work (e.g., Saphire [8]). For example,
if the path contains any references to constants or variables,
QUACK replaces them with the AST node representing the
referenced constant/variable.

Furthermore, if the included path contains function calls,
QUACK attempts to reproduce the result of the call over
the argument in the case where the call is to a known API
(e.g., built-in PHP string manipulation APIs). QUACK keeps
replacing the nodes recursively until the include path only
contains either string literals or nodes that cannot be resolved
(e.g., a call to an unknown API). Finally, QUACK creates a
regular expression by concatenating the resulting string literals
and replacing unknown nodes with a wildcard (*). Finally, the
regular expression is evaluated, and any matching project files
are recorded as the resolved dependencies for the file.

When encountering autoloaders, QUACK examines their
calling context. If the autoloader is a Composer-generated
PSR-4 autoloader, QUACK parses the developer-specified
namespace-to-subdirectory mappings and uses its own PSR-
4-compliant implementation to detect all possible files that
can be autoloaded based on the specified mappings. QUACK
then adds an edge between the file including the autoloader
(i.e., vendor/autoload.php) and each detected file. Other
autoloader schemes are not supported and lead to an error.

In the example in Fig. 6, QUACK will construct the CDG
as presented in the figure: it will create edges from A1.php

and A2.php to B.php, from B.php to C.php, from C.php to
D1.php and D2.php, and from D1.php to E.php. Note that
the CDG contains dependency paths between files not only
when a file explicitly includes another, but also when there is
an implicit dependency (i.e., the path from A1.php to E.php).
Traversing the CDG When a call to a deserialization API is
made from within a file, all classes defined in all files located
on a dependency path that includes the file containing the
deserialization will be available to the PHP runtime. Given
the file path containing the deserialization call, F , QUACK
traverses the graph and constructs this set of available classes.
QUACK starts traversing at the node representing F , and makes
a forward and then a backward pass. For the forward pass,
QUACK recursively follows all outgoing edges and records
all classes defined in all traversed files. Similarly, for the
backward pass, it follows all the incoming edges starting from
F , and collects all classes defined in the traversed files as
well. Using the CDG in Fig. 6, we can follow the process of
traversing the graph for a deserialize call located in C.php.
The forward pass will traverse D1.php, D2.php, and E.php,
and collect all classes defined in these files. The backward
pass will traverse B.php, A1.php, and A2.php, and collect
all their classes, constructing the final available class set.

VII. IMPLEMENTATION

We implemented QUACK as an extension of the analyses
provided by the Psalm and Joern program analysis frame-
works. Psalm is a PHP static analysis tool primarily used
for providing linting information for PHP source code; our
first implementation forked Psalm v5.7.0 [61] and added
∼ 3000 lines of code to implement QUACK’s static duck
typing algorithm. While Psalm supports all versions of PHP,
we did encounter cases where Psalm’s (unmodified) parsing
or analysis passes led to crashes or out-of-memory errors.

10

A1.php

#include "B.php";

...

#include "B.php";

...

A2.php

#include "C.php";

...

B.php C.php

#include "D1.php";

#include "D2.php";

...

#include "E.php";

...

D1.php

...

D2.php

...

E.php

Fig. 6: QUACK constructs and traverses the class-def-graph (CDG) to identify the available classes at each program location.

To overcome some of the analysis limitations of Psalm,
we complemented Psalm’s analysis by extending QUACK to
use Joern. Joern is a static analysis framework that supports
the analysis of multiple source code programming languages,
including C, Java, and PHP, and enables security researchers
to query source code for vulnerability patterns [66]. We forked
Joern v2.0.140 and extended it to support type-inference anal-
ysis passes for PHP source code (we have since contributed
these analysis passes back into the upstream Joern repository),
and we implemented QUACK’s static duck typing algorithm
as a Scala program that interacts with Joern’s analysis API.
To facilitate the analysis of WordPress plugins, we employed
the wordpress-stubs PHP package [32]. For our CDG-
based available classes computation process, we used parts of
Saphire [8]. Unfortunately, the Saphire framework only sup-
ports analysis of PHP code version < 8.0, which subsequently
limited QUACK’s analyses.

VIII. EVALUATION

We developed QUACK to mitigate the exploitation of de-
serialization vulnerabilities in PHP. We intend for QUACK to
be practical for developers to apply to production applications
and frameworks at scale. To determine the efficacy of QUACK,
we evaluated it along three research questions:

RQ1: How well does QUACK reduce the exploitability of de-
serialization vulnerabilities?

RQ2: What is the analysis runtime of QUACK?
RQ3: How do the different components of QUACK contribute

to its success?

A. Experiment Setup

Our evaluation is composed of three PHP datasets: FUGIO,
VULN202X, and CRAWLED.

The FUGIO dataset was adapted from the dataset used
by the authors of FUGIO [41] to evaluate the effectiveness
of their system in generating exploit chains against deserial-
ization vulnerabilities. The dataset used to evaluate FUGIO
is composed of PHP applications, each with an identified
deserialization vulnerability, and includes all applications used
by Dahse et al. [12] in their evaluation. Some vulnerabilities
in the dataset are from real disclosed CVEs, while others are
artificially introduced in order to test the efficacy of FUGIO
at generating exploits. Among the real CVEs in the origi-
nal dataset, some vulnerabilities were caused by user inputs

reaching the unserialize function, while others were PHAR
vulnerabilities resulting from PHP file operations on serialized
metadata. After removing the artificial vulnerabilities (for
lacking enough context for meaningful analysis), the PHAR
vulnerabilities (for lacking the allowed_classes mechanism
for mitigation), one misclassified vulnerability (CVE-2014-
0334 is an XSS), and vulnerabilities for which FUGIO was
not able to generate exploits in their original evaluation, we
were left with five vulnerable applications to evaluate.

Aiming to experiment on a larger set of vulnerable appli-
cations, specifically ones targeting modern PHP versions, we
explored the vulnerabilities in the NIST national vulnerability
dataset [37] looking for deserialization vulnerabilities to con-
struct VULN202X. Specifically, we sampled 12 CVEs from all
CVEs awarded between the beginning of 2020 and the first half
of 2023. Following a manual examination, we had to exclude 7
that were PHAR-based, wrongly classified (e.g., CVE-2022-
48093 which is a command injection vulnerability), did not
contain enough information to identify the vulnerable code
location (e.g., CVE-2022-33900), or involved software that
is not open-sourced (e.g., CVE-2023-25135 for vBulletin),
leaving five CVEs in the VULN202X dataset.

Finally, we crawled Github looking for PHP projects using
deserialization APIs to create CRAWLED. Applying QUACK
to random projects allowed us to put QUACK to the test of
analyzing real-world projects in an uncontrolled scenario and
also allowed us to contribute to the open-source community.
Specifically, we used the query in [17] also including a filter
for “stars > 100” to download five random projects.
Evaluation environment We run our experiment on a Linux
workstation armed with an eight-core Intel i7 1.9GHz CPU
and 16GB of RAM.

B. RQ1: How well does QUACK reduce the exploitability of
deserialization vulnerabilities?

We designed QUACK to mitigate the exploitation of deseri-
alization vulnerabilities, leaving the existing semantics of the
application unchanged. In light of this goal, we perform two
experiments to evaluate QUACK along three complementing
axes: (i) gadget blocking, (ii) wrongfully excluded classes and
(iii) preventing exploitation. For (i) we measure the proportion
of gadgets blocked by QUACK’s fix compared to the number
of gadgets that exist in the application. For (ii), we compare
the set of allowed classes constructed by QUACK against the

11

version adapted by the application’s developers. For (iii), we
measure if the application protected by QUACK is exploitable
in practice, by trying to construct a viable exploit for it.

Measuring all axes is important, as the fact that automatic
tools can not construct an exploit does not mean the applica-
tion is in fact not exploitable, nor that the suggested allowed
classes are not missing a required class.

Gadget blocking In Section II-B, we explained that in order
to create an exploit, an attacker needs to chain one or more
gadgets. As the success of an exploit creation process depends
on the payload in mind and the chances of the right primitives
being in the right place, we will use the number of gadgets
as a proxy measure for how likely is it for the attacker to
successfully create an exploit, keeping in mind that no exploits
can be created when no classes are allowed.

Table II shows the results of our experiment designed
to measure QUACK’s fix precision. Each row in Table II
contains information about one vulnerability, detailing the
source dataset, CVE, application name and version, and the
fix precision details. As CVE-2021-25294, reported against
OpenCATS, contained five independent deserialization API
vulnerabilities, we present each vulnerability in its own row.
The number of gadgets that were available for exploit creation
before applying the fix suggested by QUACK is listed as
blocked gadgets, while the ones that remain after the fix are
listed as remaining gadgets. We also specify the percentage of
gadgets blocked proportional to the total gadget count in the
application. We measure gadgets compared to the upper bound,
all gadgets in the application, as the specific classes loaded
and kept in the interpreter’s memory depend on previous
executions and implementation details of the interpreter.3

On average, using QUACK’s suggested fix successfully
blocks 97% of gadgets. For 80% of cases, all gadgets are
blocked. For the three remaining cases, two from OpenCATS
(CVE-2021-25294 (2) and (5)) and ForkCMS (CVE-2020-
24036) QUACK blocks an average of 84% gadgets.

The three cases listed above, where QUACK was not able
to block all gadgets, have the same root cause: QUACK’s
static analysis encountered a dynamic invocation, i.e., a call
to a procedure called by name, where the name is resolved
dynamically. In all these cases, QUACK’s analysis raises an
alert when such unsupported calls are encountered, without
resolving the dynamically determined call, the analysis can
not proceed with collecting more usage evidence. Nonetheless,
for this experiment, we decided to force QUACK to continue
the execution, causing it to fall back to an unfiltered set of
available classes.

Specifically, the encountered calls are PHP dynamic
invocation built-ins designed to enable a call-
back pattern. For ForkCMS, this was a call to
call_user_func_array([$class, $method],...) us-
ing a class and method names determined by strings fetched

3Charles Fol [31] shows an interesting vector for tricking PHP into loading
classes that can later be used as part of a POP exploit chain.

from a configuration file designed to allow a plugin-like
extension. For OpenCATS, in both cases, the control flow
arrives at a call to new $class(...), where $class

contains a string with the class name. Even though for these
cases QUACK could not conclude the analysis, the suggested
fix for these three cases still managed to block an average of
84% of the gadgets in the application.

Wrongfully excluded classes Over-limiting the allowed
classes might protect from attacks but could lead to the
application crashing when it tries to deserialize a benign class.
Thus, we compare the set of classes suggested by QUACK to
the ground truth set expressed in the application’s fix. When
the application’s developers fixed the deserialization API call
by specifying the allowed_classes argument we used that
set as is. In other cases, where the developers converted the
deserialize calls into a non-native scheme that does not support
complex objects (e.g., JSON-based) we treated it as if the
allowed classes set should be empty. Examining the suggested
classes in QUACK’s fixes, none of the cases caused a legitimate
benign class to be wrongfully blocked.

Preventing exploitation QUACK prevents exploitation by re-
stricting the set of class objects that can be used to con-
struct exploits in deserialization attacks. To evaluate how well
QUACK prevents spurious class objects from being used in
deserialization attacks, for all the applications in our FUGIO
dataset, we wanted to generate exploits attacking both (1) the
original “un-protected” version of the application and (2) the
protected version created using QUACK. We then attempted to
use all exploits against (1) and (2).

We employ the exploit generation tool FUGIO to generate
all the exploits for this experiment. FUGIO [41] is a state-
of-the-art automatic exploit generation tool for crafting PHP
object injection exploits. Given a deserialization vulnerability,
FUGIO analyzes the application to determine possible exploit
chains. When QUACK’s analysis is applied to a vulnerable
application, tools like FUGIO should be unable to generate
viable exploit chains. We set a timeout of 12 hours for every
FUGIO run. We limited this experiment to the FUGIO dataset,
as FUGIO requires a triggering input to drive exploiting
attempts, which was not available in the right form for the
other applications.

We modified FUGIO to properly account for the optional
allowed_classes parameter to the PHP unserialize

function. In its original implementation, FUGIO did not
account for the semantics of the optional parameters to
unserialize, which caused it to create exploit chains that
may not have been viable in cases where the application
code restricted the classes of the unserialized object. Our
modification adds the semantics of the allowed_classes

parameter, in order to make FUGIO’s analysis more precise
(i.e., make it only consider gadgets in classes contained in
allowed_classes), and remove false positives. We have
submitted our modifications to FUGIO as a GitHub Pull
Request back to the upstream FUGIO project at https://gi
thub.com/WSP-LAB/FUGIO/pull/1.

12

https://github.com/WSP-LAB/FUGIO/pull/1
https://github.com/WSP-LAB/FUGIO/pull/1

TABLE II: Applying QUACK’s suggested fix to applications with deserialization vulnerabilities and confirmed fixes, allows,
on average, for blocking 97% of gadgets. In 80% of the cases, 100% of gadgets are blocked.

Dataset Application CVE Gadgets
Blocked # Remaining % Blocked

FUGIO

Piwik 0.4.5 CVE-2009-4137 115 0 100%
Joomla-3.0.2 CVE-2013-1453 74 0 100%

CubeCart 5.2.0 CVE-2013-1465 42 0 100%
Open Web Analytics 1.5.6 CVE-2014-2294 14 0 100%

Contao CMS 3.2.4 CVE-2014-1860 150 0 100%

VULN-202X

ForkCMS 5.8.3 CVE-2020-24036 221 23 91%
WP-hotel-booking 10.2.1 CVE-2020-29047 103 0 100%

OpenCATS-0.9.5 (1)

CVE-2021-25294

288 0 100%
OpenCATS-0.9.5 (2) 232 56 81%
OpenCATS-0.9.5 (3) 288 0 100%
OpenCATS-0.9.5 (4) 288 0 100%
OpenCATS-0.9.5 (5) 232 56 81%
WP-AIOSEO 4.1.0.1 CVE-2021-24307 23 0 100%

WP-booking-calander 9.1.1 CVE-2022-1463 96 0 100%
WP-lead-generated 1.23 CVE-2023-28667 40 0 100%

TABLE III: The number of exploits generated by FUGIO [41]
vs. the unprotected and QUACK-protected applications. After
applying our fixes, all applications are no longer exploitable.

Application CVE # FUGIO-Generated Exploits
Unprotected Protected

Piwik 0.4.5 CVE-2009-4137 1 0
Joomla-3.0.2 CVE-2013-1453 2 0

CubeCart 5.2.0 CVE-2013-1465 1 0
Contao CMS 3.2.4 CVE-2014-1860 5 0

Open Web Analytics 1.5.6 CVE-2014-2294 14 0

Table III shows the results for the evaluated applications.
Each row represents two runs of FUGIO, one (left) on the
original unprotected application, and another (right) on the
QUACK protected one. For each application, FUGIO was able
to produce at least one exploit for the unprotected version,
and overall results are consistent with the ones presented in
the FUGIO paper for these applications.

On the other hand, for the protected applications, after
applying QUACK’s fix, FUGIO was not able to produce any
exploits. This is due to the fact that in these cases, either
a) allowed_classes was set to false, or b) the allowed
classes do not contain gadgets (e.g., owa_event mentioned
in Section IV). Unsurprisingly, trying to execute the exploits
generated for the unprotected version against the protected
version of the application did not succeed. As an illustrative
example, FUGIO identified 14 exploit chains for use against
CVE-2014-2294 in Open Web Analytics (also discussed in
Fig. 5). However, QUACK determined that at the vulnerable
unserialize call site, the only class that should be allowed
for deserialization is class owa_event, which means that
any deserialization exploits should only able to use objects
of type owa_event. Of the 14 exploits created by FUGIO,
none contained the owa_event class object, and all used
other object types. Therefore, all 14 exploits created against
the unprotected version would be prevented by setting the
allowed_classes parameter to owa_event.

Submitting fixes to open-source projects Tasking QUACK with
analyzing and fixing applications from CRAWLED allowed us
to submit three PRs that were merged by their developers.

Unlike the experiments on the other datasets, this experi-
ment formed an uncontrolled study, as we did not know if
the fix generated by QUACK was correct. Out of the five PHP
applications in this dataset, we had to discard two projects that
use PHP 8 features (which one of our underlying components
lacks support for), yet for the other three, which included
CakePHP, QUACK terminated successfully and their results
were manually validated to the best of our abilities (examined
by two PhD students or more). Turning our attention back
to the projects themselves, we were happy to learn they are
active (committed to in the last year) and had relevant policies
in place to accept pull requests and security notifications
from external developers. We submitted QUACK’s results
along with relevant explanations for the developers about
the risks involved and the process we performed to generate
the fix as PRs. All PRs were eventually merged by their
developers. One example of such a PR can be found here:
https://github.com/cakephp/cakephp/pull/17162.

C. RQ2: What is the analysis runtime of QUACK?

For QUACK to be practical for developers to use, it needs
to be easy to incorporate into existing workflows. The time
that QUACK takes to analyze an active project must be small
enough that developers can apply it to large projects. We
measured the analysis runtime of QUACK on all applications
we evaluated and also recorded the number of PHP source
code files and approximate lines of code in the application.

Our results, shown in Table IV, demonstrate that QUACK
is able to quickly analyze large-scale applications without
imposing a burden on developers. All analyses complete within
approximately six minutes (362 seconds) and in an average of
193 seconds, which makes QUACK practical to incorporate
into developer workflows, whether alongside programming,
e.g., linters, or at the end of a development cycle and prior
to deployment, e.g., in continuous integration/continuous de-
ployment (CI/CD) pipelines.

13

https://github.com/cakephp/cakephp/pull/17162

TABLE IV: Analysis time of QUACK on each analyzed
application, with the number of PHP files and approximate
lines of code in each application.

Application Analysis
Runtime (s)

of
Files KLoC

Piwik 0.4.5 38 787 176
Joomla-3.0.2 129 1574 284
CubeCart 5.2.0 52 864 130
Open Web Analytics 1.5.6 39 486 81
Contao CMS 3.2.4 172 583 203
ForkCMS 5.8.3 39 837 101
WP-hotel-booking 10.2.1 276 169 23
OpenCATS 0.9.5-3 270 355 137
WP-AIOSEO 4.1.0.1 362 370 64
WP-booking-calendar 9.1.1 207 88 54
WP-lead-generated 1.23 222 23 5

D. RQ3: How do the different components of QUACK con-
tribute to its success?

In this experiment, we decompose QUACK intending to
gauge the importance of each component in an ablation study.
To measure the importance of each of QUACK’s components,
we create several variants of QUACK by disabling one or
more components (replacing them with pass-through logic)
and using the rest of the system as is. To help us describe
QUACK’s variants we will use the component names in Fig. 4.

We constructed the following variants of QUACK:

• QUACK-ONLYTYPE: In this variation of QUACK we
disabled both the “Static Duck Typing” and “Compute
Available Classes” components, leading to QUACK using
the types deduced by the underlying type inference tool
if these existed, and otherwise allowing all classes.

• QUACK-NODUCKS In this variation of QUACK we
disabled the “Static Duck Typing” component, leading to
QUACK using the types deduced by the underlying type
inference tool if these existed, and otherwise falling back
to the collected available classes.

• QUACK-NOAVAIL: In this variation of QUACK we
disabled the “Compute Available Classes” component,
causing all classes in the application to be considered
by the analysis.

Table V shows the results of this experiment. Each row
presents the blocked and remaining gadget count for one
application for all of QUACK’s variants. As the applications
are the same, due to space constraints, we only keep the
application name in this table. As we reported in the previous
experiment, QUACK’s analysis is conservative in that it does
not miss required classes. In this experiment, we encountered
the same results for QUACK’s variations, i.e., none of the
variants caused missed required classes.

In all the vulnerable applications QUACK-ONLYTYPE is
not capable of using a predicted type to populate the allowed
classes set and block gadgets. In fact, QUACK-ONLYTYPE
only predicts a specific type in one case, OpenCATS applica-
tion (CVE-2021-25294 (4)), yet this type (veradic [48]) can
wrap any type object.

1 <?php
2 /* snip */
3 private function onEmailSettings(){
4 $mailerSettings = new MailerSettings($siteID);
5 $mailerSettingsRS = $mailerSettings->getAll();
6 $m = unserialize($mailerSettingsRS['message']);
7 $m[STAT] = (UI::Checked('stat', $input) ? 1 :

0);↪→

8 /* similar field updating lines follow */
9 $mailerSettings->set('message', serialize($m));

10 /* snip */
11 }

Fig. 7: A code example updating a serialized object stored
in a database. For this and similar examples, QUACK lacks
a global context of all objects serialized in the program to
correctly identify all types in the object.

This result unequivocally shows that relying on partial types
inferred from the code can not assist with protecting appli-
cations against deserialization attacks. Contrasting QUACK-
NODUCKS’s results with QUACK shows that it only matches
QUACK’s success for the three cases we discussed in the RQ1
experiment, where the analysis encounters an explicit dynamic
call into a class method using unknown classes and methods.
This tracks with the fact that QUACK falls back to allowing
available classes in these cases. QUACK-NODUCKS achieves
an average gadget blocking percentage of 58.8%.

These results showcase the importance of our novel static
duck typing approach. The complementary result to QUACK-
NODUCKS is shown in QUACK-NOAVAIL: in the mentioned
three cases, QUACK falls back on the full set of classes in the
application, dropping its average gadget blocking percentage
to 80.1%, compared with 97% achieved by QUACK. This result
shows the importance of the static calculation of the available
classes as a good fallback option.

IX. DISCUSSION

A. Updating Serialized Objects

Apart from the group of samples we discussed in Sec-
tion VIII-B, where a dynamic call to a function disrupts
QUACK’s ability to track the usage of the unserialized object,
there is one more group of samples QUACK has limited ability
to handle: object updates. In many applications, objects are
serialized with the purpose of storing them in a database.
When the objects require an update, they are fetched from
the database and are deserialized before the update is applied
to them, followed by reserialization of the object for storing
back to the database. Attackers with even limited access to the
database can use such an operation to pivot from the database
to the application server by placing an exploit in place of the
benign serialized object.

Because these deserialization calls are usually not exposed
directly to users they are not awarded CVEs, but still put
applications at risk. Fig. 7 shows an example of this pattern,
which is a simplified version of the code used by OpenCATS
version 0.9.7.2. In lines 4–5, the mailer settings are read
from the database where they were previously stored in a

14

TABLE V: The results of our ablation study (RQ3) measuring the blocked and remaining gadgets for three variants of QUACK
compared with QUACK. In each variant one or two key components is disabled.

Dataset Application QUACK-ONLYTYPE QUACK-NODUCKS QUACK-NOAVAIL QUACK
Blocked # Remaining % Blocked # Blocked # Remaining % Blocked # Blocked # Remaining % Blocked # Blocked # Remaining % Blocked

FUGIO

Piwik 0.4.5 0 115 0% 111 4 96.52% 115 0 100% 115 0 100%
Joomla-3.0.2 0 74 0% 59 15 80% 74 0 100% 74 0 100%

CubeCart 5.2.0 0 42 0% 1 41 2.38 % 42 0 100% 42 0 100%
Open Web Analytics 1.5.6 0 14 0% 2 12 14.29% 14 0 100% 14 0 100%

Contao CMS 3.2.4 0 150 0% 0 150 0% 150 0 100% 150 0 100%

VULN-202X

ForkCMS 5.8.3 0 244 0% 221 23 90.57% 0 244 0% 221 23 90.57%
WP-hotel-booking 10.2.1 0 103 0% 103 0 100% 103 0 100% 103 0 100%
OpenCATS 0.9.5-3 (1) 0 288 0% 56 232 19.44% 288 0 100% 288 0 100%
OpenCATS 0.9.5-3 (2) 0 288 0% 232 56 80.56% 0 288 0% 232 56 80.56%
OpenCATS 0.9.5-3 (3) 0 288 0% 56 232 19.44% 288 0 100% 288 0 100%
OpenCATS 0.9.5-3 (4) 0 288 0% 56 232 19.44% 288 0 100% 288 0 100%
OpenCATS 0.9.5-3 (5) 0 288 0% 232 56 80.56% 0 288 0% 232 56 80.56%
WP-AIOSEO 4.1.0.1 0 23 0% 0 23 0% 23 0 100% 23 0 100%

WP-booking-calander 9.1.1 0 96 0% 94 2 97.92% 96 0 100% 96 0 100%
WP-lead-generated 1.23 0 40 0% 40 0 100% 40 0 100% 40 0 100%

serialized form, and in line 6 they are deserialized. In line
7 (and the following lines we omitted for space) the settings
are updated according to the new input. In line 9 the object is
then reserialized, and in the following lines (omitted for space)
the serialized object is written back to the database.

When QUACK analyzes this code it faces two problems.
First, the origin of the object can not be tracked, as the
SQL query used to fetch the serialized object is not the same
one used to place it in the database originally. On the other
hand, once the deserialized object is used as an argument to
serialize(), it does not allow the system to learn anything
else about possible classes stored in the other fields in the
array, and all statements at lines 10 and onward manipulate
the serialized object, and not the object itself. We plan on
addressing these kinds of use patterns in the future.

B. Expanding QUACK To Additional Languages

We explored vulnerable applications in other languages with
the aim of expanding QUACK to support them. As mentioned
in Section I, the most prominent other languages suffering
from deserialization vulnerabilities are Java and Python. Ex-
panding QUACK to support Java and other statically typed
languages will require resolving over-broad type declarations,
(e.g., Java’s Object) into more for specific types for concrete
applications. On the surface, expanding QUACK to Python
seems more straightforward, as they are both dynamically
interpreted languages. Alas, as we mentioned in Section II-B,
Python’s unique serialization approach that is implemented
as a stack-based virtual machine complicates the process of
hardening the deserialization process. After we implemented
a generic allowed_classes-like mechanism, we found out
that the expressiveness of the virtual machine language al-
lowed for additional ways to load and manipulate objects, not
possible in the static binary-based deserialization methods. We
plan on continuing research in this domain.

X. RELATED WORK

Automated deserialization exploit generation Automatically
generating payloads for exploiting deserialization vulnerabili-
ties has been explored by several works. Cao et al. suggested
ODDFUZZ [9] for using structured information for generating
POP exploits for Java projects with deserialization vulnerabil-
ities. ysoserial [15] is a tool that generates exploit objects

using known POP gadgets in specific Java applications. A
recent survey [56] studied the exploitability of deserialization
vulnerabilities in 19 Java projects using ysoserial, and
found all projects had enough available gadgets to construct
exploits. Dahse et al. [12] examined the exploitability of PHP
deserialization vulnerabilities by introducing an automated
approach for statically detecting and generating exploitable
POP gadget chains. FUGIO [41] improves automated exploit
generation for deserialization vulnerabilities by leveraging
both static and dynamic analyses, as well as fuzzing, to gener-
ate exploit objects that automatically trigger discovered POP
gadget chains. We leveraged exploits generated by FUGIO
to evaluate the effectiveness of QUACK at preventing dese-
rialization attacks. PHPGGC [57] applies a similar approach
to ysoserial but targets PHP. The aforementioned works
emphasize the importance of QUACK; not only do deserial-
ization vulnerabilities have serious security implications, but
exploit generation can also be automated, further increasing
exploitation chances.

Hardening PHP applications Prior work has attempted to
protect PHP applications using debloating. Minimalist [26]
debloats PHP applications by leveraging access-log files to
determine files accessed by users during interaction with the
application and using static analysis to perform a reachability
study to determine what non-reachable code can be removed
from the application. Less is More [7] leverages profiling tech-
niques to collect coverage information for a PHP application
and uses the collected information to debloat the application.
Saphire [8] limits the set of system calls a PHP application
can use by composing a set of the system calls required by the
application with a combination of static and dynamic analysis.
Unlike the above works that apply a global effort at reducing
the attack surface against PHP applications, QUACK focuses
its effort on the intrusion point and directly attempts to hinder
exploitation by only allowing the required classes.

Type inference for dynamic languages Several works have
explored type inference via means of (either static or dynamic)
program analysis for dynamically typed languages such as
Ruby [4], [16], [28], [29], JavaScript [5], [19] and Python [20],
[24], [33], [65]. The HipHop compiler [67], a tool for translat-
ing PHP code to C++, leveraged a constrained-based algorithm
to statically infer types for PHP.

15

It was deprecated in favor of HHVM [23], a virtual machine
for the Hack [22] programming language, a PHP variant that
supports static typing. Even though HHVM supports types
inference, it only supports programs written in Hack, and
not regular PHP, and would thus not be suited for use by
QUACK. As we discussed above and saw in the evaluation,
these tools are too conservative and aim at inferring the exact
type, making them unsuitable in most cases for inferring the
classes that should be allowed in the deserialization point.

Other works have explored type inference of dynami-
cally typed languages using AI-assisted tools. JSNice [53]
uses machine learning to generate type annotations for
JavaScript code. Similarly, PYInfer [11] leverages a deep-
learning model to statically infer types in Python programs.
Finally, Klingström and Olsson [30] explore the use of deep
learning to generate type annotations for PHP. Even though
AI-based approaches can be useful in applications where
soundness is not crucial, that is not the case for QUACK,
where unsound type inference could potentially cause crashes
by disallowing correct classes from being unserialized.

XI. CONCLUSION

In this paper, we presented QUACK, a framework for auto-
matically mitigating deserialization attacks. QUACK statically
derives the classes that are available at each deserialization
API call site, and leverages static duck typing to further filter
that set of classes down to those that should be allowed to be
deserialized. QUACK uses this set to fix deserialization calls
in order to prevent all non-allowed classes from being deseri-
alized, effectively blocking gadgets contained in them from
being used to construct exploits. We implemented QUACK
for PHP and demonstrated its effectiveness by protecting
applications against exploitation. QUACK reduces the average
amount of exploits generated by a state-of-the-art automatic
exploit generation tool from five to zero, by blocking an
average of 97% of classes that could be used as gadgets.

ACKNOWLEDGMENT

We thank the anonymous reviewers and our shepherd for
their constructive and valuable feedback. This work was sup-
ported in part by gifts from Google, Columbia SEAS/EVPR
stimulus grants, and a NDSEG fellowship.

REFERENCES

[1] “Composer: A Dependency Manager for PHP,” https://getcomposer.org.
[2] “PHP Framework Interop Group,” https://www.php-fig.org.
[3] M. Alyssa Rahman, “Now You Serial, Now You Don’t — Systematically

Hunting for Deserialization Exploits,” https://www.mandiant.com/resou
rces/blog/hunting-deserialization-exploits.

[4] J.-h. D. An, A. Chaudhuri, J. S. Foster, and M. Hicks, “Dynamic Infer-
ence of Static Types for Ruby,” in ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL), 2011, pp. 459–472.

[5] C. Anderson, P. Giannini, and S. Drossopoulou, “Towards Yype In-
ference for JavaScript,” in European Conference on Object-Oriented
Programming (ECOOP), 2005, pp. 428–452.

[6] T. Andre, “PHP RFC: Don’t automatically unserialize Phar metadata
outside getMetadata(),” https://wiki.php.net/rfc/phar_stop_autoloading
_metadata.

[7] B. A. Azad, P. Laperdrix, and N. Nikiforakis, “Less is More: Quantifying
the Security Benefits of Debloating Web Applications,” in USENIX
Security Symposium (SEC), 2019, pp. 1697–1714.

[8] A. Bulekov, R. Jahanshahi, and M. Egele, “Saphire: Sandboxing PHP
Applications with Tailored System Call Allowlists,” in USENIX Security
Symposium (SEC), 2021, pp. 2881–2898.

[9] S. Cao, B. He, X. Sun, Y. Ouyang, C. Zhang, X. Wu, T. Su, L. Bo, B. Li,
C. Ma, J. Li, and T. Wei, “ODDFUZZ: Discovering Java Deserialization
Vulnerabilities via Structure-Aware Directed Greybox Fuzzing,” 2023.

[10] G. L. Chris Frohoff, “Marshalling Pickles: How Deserializing Objects
Will Ruin Your Day (AppSecCali2015),” https://appseccalifornia2015.s
ched.com/event/40c922b93ac45988f1be4da3dea27892#.VjpyL36rRhE.

[11] S. Cui, G. Zhao, Z. Dai, L. Wang, R. Huang, and J. Huang, “Pyinfer:
Deep learning semantic type inference for python variables,” 2021.

[12] J. Dahse, N. Krein, and T. Holz, “Code Reuse Attacks in PHP:
Automated POP Chain Generation,” in ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2014, pp. 42–53.

[13] L. Damas and R. Milner, “Principal type-schemes for functional pro-
grams,” in ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL), 1982, pp. 207–212.

[14] S. Esser, “Shocking News in PHP Exploitation,” https://owasp.org/ww
w-pdf-archive/POC2009-ShockingNewsInPHPExploitation.pdf.

[15] C. Frohoff, “ysoserial,” https://github.com/frohoff/ysoserial.
[16] M. Furr, J.-h. D. An, J. S. Foster, and M. Hicks, “Static Type Inference

for Ruby,” in ACM Symposium on Applied Computing (SAC), 2009, pp.
1859–1866.

[17] GitHub, “GitHub search for native deserialization usage,” https://github
.com/search?q=language%3Aphp+unserialize%28+OR+serialize%28&
type=repositories.

[18] ——, “GitHub security advisory search for deserialization vulnerability,”
https://github.com/advisories?query=cwe%3A502.

[19] B. Hackett and S.-y. Guo, “Fast and Precise Hybrid Type Inference for
JavaScript,” ACM SIGPLAN Notices, vol. 47, no. 6, pp. 239––250, 2012.

[20] M. Hassan, C. Urban, M. Eilers, and P. Müller, “MaxSMT-Based Type
Inference for Python 3,” in International Conference on Computer Aided
Verification (CAV), 2018, pp. 12–19.

[21] M. Hills, P. Klint, and J. Vinju, “An Empirical Study of PHP Feature
Usage: A Static Analysis Perspective,” in International Symposium on
Software Testing and Analysis (ISSTA), 2013, pp. 325–335.

[22] F. Inc, “Hacklang,” https://hacklang.org.
[23] ——, “HHVM,” https://hhvm.com.
[24] M. P. Inc, “Pyre: A performant type-checker for Python 3,” https://pyre

-check.org.
[25] V. Jacobson, “Rfc1144: Compressing tcp/ip headers for low-speed serial

links,” USA, 1990.
[26] R. Jahanshahi, B. Amin Azad, N. Nikiforakis, and M. Egele, “Minimal-

ist: Semi-automated Debloating of PHP Web Applications through Static
Analysis,” in USENIX Security Symposium (SEC), 2023, pp. 5557–5573.

[27] JetBrains, “PhpStorm - The Lightning-Smart PHP IDE,” https://www.je
tbrains.com/phpstorm/.

[28] M. Kazerounian, J. S. Foster, and B. Min, “SimTyper: Sound Type Infer-
ence for Ruby Using Type Equality Prediction,” ACM on Programming
Languages, vol. 5, no. OOPSLA, pp. 1–27, 2021.

[29] M. Kazerounian, B. M. Ren, and J. S. Foster, “Sound, Heuristic
Type Annotation Inference for Ruby,” in ACM SIGPLAN International
Symposium on Dynamic Languages (DLS), 2020, pp. 112—-125.

[30] S. Klingström and P. Olsson, “Type Inference in PHP using Deep
Learning,” LU-CS-EX, 2020.

[31] P. S. Library, “Unserializable, but unreachable: Remote Code Execution
on vBulletin,” https://www.ambionics.io/blog/vbulletin-unserializable-b
ut-unreachable.

[32] ——, “wordpress-stubs,” https://packagist.org/packages/php-stubs/wor
dpress-stubs.

[33] E. Maia, N. Moreira, and R. Reis, “A Static Type Inference for Python,”
Workshop on Dynamic Languages and Applications (DYLA), vol. 5,
no. 1, p. 1, 2012.

[34] MITRE, “CVE-2021-42321,” https://cve.mitre.org/cgi-bin/cvename.cgi
?name=CVE-2021-42321.

[35] ——, “CWE-843: Access of Resource Using Incompatible Type (’Type
Confusion’),” https://cwe.mitre.org/data/definitions/843.html.

[36] NIST, “CVE-2020-10189 Detail,” https://nvd.nist.gov/vuln/detail/CVE
-2020-10189.

[37] ——, “National Vulnerability Database,” https://nvd.nist.gov/vuln.

16

https://getcomposer.org
https://www.php-fig.org
https://www.mandiant.com/resources/blog/hunting-deserialization-exploits
https://www.mandiant.com/resources/blog/hunting-deserialization-exploits
https://wiki.php.net/rfc/phar_stop_autoloading_metadata
https://wiki.php.net/rfc/phar_stop_autoloading_metadata
https://appseccalifornia2015.sched.com/event/40c922b93ac45988f1be4da3dea27892#.VjpyL36rRhE
https://appseccalifornia2015.sched.com/event/40c922b93ac45988f1be4da3dea27892#.VjpyL36rRhE
https://owasp.org/www-pdf-archive/POC2009-ShockingNewsInPHPExploitation.pdf
https://owasp.org/www-pdf-archive/POC2009-ShockingNewsInPHPExploitation.pdf
https://github.com/frohoff/ysoserial
https://github.com/search?q=language%3Aphp+unserialize%28+OR+serialize%28&type=repositories
https://github.com/search?q=language%3Aphp+unserialize%28+OR+serialize%28&type=repositories
https://github.com/search?q=language%3Aphp+unserialize%28+OR+serialize%28&type=repositories
https://github.com/advisories?query=cwe%3A502
https://hacklang.org
https://hhvm.com
https://pyre-check.org
https://pyre-check.org
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.ambionics.io/blog/vbulletin-unserializable-but-unreachable
https://www.ambionics.io/blog/vbulletin-unserializable-but-unreachable
https://packagist.org/packages/php-stubs/wordpress-stubs
https://packagist.org/packages/php-stubs/wordpress-stubs
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-42321
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-42321
https://cwe.mitre.org/data/definitions/843.html
https://nvd.nist.gov/vuln/detail/CVE-2020-10189
https://nvd.nist.gov/vuln/detail/CVE-2020-10189
https://nvd.nist.gov/vuln

[38] Oracle, “Java Object Serialization,” https://docs.oracle.com/javase/8/doc
s/technotes/guides/serialization/index.html.

[39] ——, “Serialization Filtering,” https://docs.oracle.com/javase/8/docs/te
chnotes/guides/serialization/filters/serialization-filtering.html#addressi
ng-deserialization-vulnerabilities.

[40] OWASP, “OWASP Top Ten,” https://owasp.org/www-project-top-ten/.
[41] S. Park, D. Kim, S. Jana, and S. Son, “FUGIO: Automatic Exploit Gen-

eration for PHP Object Injection Vulnerabilities,” in USENIX Security
Symposium (SEC), 2022, pp. 197–214.

[42] PHP, “Autoloading Classes,” https://www.php.net/manual/en/language.o
op5.autoload.php.

[43] ——, “PHP include,” https://www.php.net/manual/en/function.include.p
hp.

[44] ——, “PHP: json_encode,” https://www.php.net/manual/en/function.jso
n-encode.php.

[45] ——, “PHP: Magic Methods,” https://www.php.net/manual/en/language
.oop5.magic.php#object.tostring.

[46] ——, “PHP Namespaces,” https://www.php.net/manual/en/language.n
amespaces.php.

[47] ——, “PHP unserialize,” https://www.php.net/manual/en/function.unser
ialize.php.

[48] ——, “variant class,” https://www.php.net/manual/en/class.variant.php.
[49] PHP-FIG, “PSR-4: Autoloader,” https://www.php-fig.org/psr/psr-4/.
[50] PHP.Watch, “PHP 8.0: phar:// stream wrapper no longer unserializes

meta data automatically,” https://php.watch/versions/8.0/phar-stream-w
rapper-unserialize.

[51] Python, “json — JSON encoder and decode,” https://docs.python.org/3/
library/json.html.

[52] ——, “pickle — Python object serialization,” https://docs.python.org/3/
library/pickle.html.

[53] V. Raychev, M. Vechev, and A. Krause, “Predicting Program Properties
from "Big Code",” ACM SIGPLAN Notices, pp. 111–124, 2015.

[54] E. Romano, “PHP Object Injection,” https://owasp.org/www-pdf-archi
ve/POC2009-ShockingNewsInPHPExploitation.pdf.

[55] V. Saenger, “How To Save And Share your Machine Learning Models
(Plus More), All With One File,” https://towardsdatascience.com/how-t
o-save-and-share-your-machine-learning-models-plus-more-all-with-o
ne-file-a2536dd38883.

[56] I. Sayar, A. Bartel, E. Bodden, and Y. Le Traon, “An In-depth Study
of Java Deserialization Remote-Code Execution Exploits and Vulnera-
bilities,” ACM Transactions on Software Engineering and Methodology
(TOSEM), pp. 1–45, 2022.

[57] A. Security, “PHPGGC: PHP Generic Gadget Chains,” https://github.c
om/ambionics/phpggc.

[58] H. Shacham, “The Geometry of Innocent Flesh on the Bone: Return-
into-Libc without Function Calls (on the X86),” in ACM Conference on
Computer and Communications Security (CCS), 2007, pp. 552—-561.

[59] E. Sultanik, “Never a dill moment: Exploiting machine learning pickle
files,” https://blog.trailofbits.com/2021/03/15/never-a-dill-moment-exp
loiting-machine-learning-pickle-files/.

[60] M. D. S. R. Team, “Understanding type confusion vulnerabilities: CVE-
2015-0336,” https://www.microsoft.com/en-us/security/blog/2015/06/17
/understanding-type-confusion-vulnerabilities-cve-2015-0336/.

[61] Vimeo, “Psalm - a static analysis tool for PHP,” https://psalm.dev.
[62] VKCOM, “noverify - Pretty fast linter (code static analysis utility) for

PHP,” https://github.com/VKCOM/noverify.
[63] M. Weiser, “Program slicing,” IEEE Transactions on Software Engineer-

ing (TSE), no. 4, pp. 352–357, 1984.
[64] A. Wollrath and K. Bharat, “Pickling State in the Java System,” USENIX

Conference on Object Oriented Technologies and Systems (COOTS), pp.
22–32, 1996.

[65] Z. Xu, X. Zhang, L. Chen, K. Pei, and B. Xu, “Python Probabilistic
Type Inference with Natural Language Support,” in ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering (FSE),
2016, pp. 607—-618.

[66] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discover-
ing vulnerabilities with code property graphs,” in 2014 IEEE Symposium
on Security and Privacy, 2014, pp. 590–604.

[67] H. Zhao, I. Proctor, M. Yang, X. Qi, M. Williams, Q. Gao, G. Ottoni,
A. Paroski, S. MacVicar, J. Evans et al., “The HipHop compiler for
PHP,” ACM SIGPLAN Notices, vol. 47, no. 10, pp. 575–586, 2012.

XII. ARTIFACT APPENDIX

A. Description & Requirements

QUACK is a framework that protects calls to deserialization
APIs in PHP by automatically deducing a set of classes
that should be allowed to be deserialized at each call site,
effectively reducing the attack surface for carrying out dese-
rialization attacks. We provide the source code for QUACK,
which is composed of two parts: (1) runner and (2) engine.

The runner is a thin Python wrapper script providing an
easy-to-use CLI for QUACK’s analysis engine. To simplify
the installation process, we packaged the engine in a Docker
container. Some components of our engine are native x86
binaries, requiring the experiment machine to be x86 as well.
We tested this artifact on a server Ubuntu 20.04.6 LTS with
Python 3.9.4, but it should work on similar Linux-based
setups. For additional information about the artifact, please
consult our detailed instructions file.

A description of the structure of the codebase, along with
a summary of each script/component is provided in our
README file in the packaged artifact.

B. How to access

Our artifact is available https://figshare.com/articles/sof
tware/QUACK_Hindering_Deserialization_Attacks_via_
Static_Duck_Typing/24578644, and contains the following
components:

• Instructions.md – Detailed instructions for in-
stalling and running QUACK.

• QuackPackage.tar.gz – The source code for
QUACK, including the evaluated applications.

• QuackFUGIO.tar.gz – The source code for the FU-
GIO tool used in our evaluation, updated to take into
account the semantics of the allowed classes argument in
the PHP deserialization API.

• deser_image_backup_only.tar.gz – QUACK’s
Docker image, to be used as a backup.

1) Hardware dependencies: We only support running the
Docker container provided for the artifact on x86 machines.
Running the container using Docker-qemu provided cross-
architecture is prohibitively slow and not supported. Make
sure you have at least 6 GB of free space on your disk to
accommodate the extracted artifact and the docker image and
output running the artifact will create.

2) Software dependencies: To run the QUACK artifact, an
installation of Docker and Python is required.

3) Benchmarks: The source code for all evaluated PHP ap-
plications is provided. No additional downloads are required.

C. Artifact Installation & Configuration

In what follows, we provide instructions for downloading
and setting up our artifact.

To download and extract the root directory of the artifact,
run:
bash
wget "https://figshare.com/ndownloader/files

17

https://docs.oracle.com/javase/8/docs/technotes/guides/serialization/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/serialization/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/serialization/filters/serialization-filtering.html#addressing-deserialization-vulnerabilities
https://docs.oracle.com/javase/8/docs/technotes/guides/serialization/filters/serialization-filtering.html#addressing-deserialization-vulnerabilities
https://docs.oracle.com/javase/8/docs/technotes/guides/serialization/filters/serialization-filtering.html#addressing-deserialization-vulnerabilities
https://owasp.org/www-project-top-ten/
https://www.php.net/manual/en/language.oop5.autoload.php
https://www.php.net/manual/en/language.oop5.autoload.php
https://www.php.net/manual/en/function.include.php
https://www.php.net/manual/en/function.include.php
https://www.php.net/manual/en/function.json-encode.php
https://www.php.net/manual/en/function.json-encode.php
https://www.php.net/manual/en/language.oop5.magic.php#object.tostring
https://www.php.net/manual/en/language.oop5.magic.php#object.tostring
https://www.php.net/manual/en/language.namespaces.php
https://www.php.net/manual/en/language.namespaces.php
https://www.php.net/manual/en/function.unserialize.php
https://www.php.net/manual/en/function.unserialize.php
https://www.php.net/manual/en/class.variant.php
https://www.php-fig.org/psr/psr-4/
https://php.watch/versions/8.0/phar-stream-wrapper-unserialize
https://php.watch/versions/8.0/phar-stream-wrapper-unserialize
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://owasp.org/www-pdf-archive/POC2009-ShockingNewsInPHPExploitation.pdf
https://owasp.org/www-pdf-archive/POC2009-ShockingNewsInPHPExploitation.pdf
https://towardsdatascience.com/how-to-save-and-share-your-machine-learning-models-plus-more-all-with-one-file-a2536dd38883
https://towardsdatascience.com/how-to-save-and-share-your-machine-learning-models-plus-more-all-with-one-file-a2536dd38883
https://towardsdatascience.com/how-to-save-and-share-your-machine-learning-models-plus-more-all-with-one-file-a2536dd38883
https://github.com/ambionics/phpggc
https://github.com/ambionics/phpggc
https://blog.trailofbits.com/2021/03/15/never-a-dill-moment-exploiting-machine-learning-pickle-files/
https://blog.trailofbits.com/2021/03/15/never-a-dill-moment-exploiting-machine-learning-pickle-files/
https://www.microsoft.com/en-us/security/blog/2015/06/17/understanding-type-confusion-vulnerabilities-cve-2015-0336/
https://www.microsoft.com/en-us/security/blog/2015/06/17/understanding-type-confusion-vulnerabilities-cve-2015-0336/
https://psalm.dev
https://github.com/VKCOM/noverify
https://figshare.com/articles/software/QUACK_Hindering_Deserialization_Attacks_via_Static_Duck_Typing/24578644?file=43173340
https://figshare.com/articles/software/QUACK_Hindering_Deserialization_Attacks_via_Static_Duck_Typing/24578644
https://figshare.com/articles/software/QUACK_Hindering_Deserialization_Attacks_via_Static_Duck_Typing/24578644
https://figshare.com/articles/software/QUACK_Hindering_Deserialization_Attacks_via_Static_Duck_Typing/24578644
https://www.docker.com

/43173076" -q --show-progress -O
quack-ae.tar.gz
tar -xf quack-ae.tar.gz
cd quack-ae

To set up the QUACK runner, create a Python virtual
environment and install the required dependencies:
bash
python -m venv quackenv
source quackenv/bin/activate
pip3 install -r requirements.txt

Please please consult our instructions file. for troubleshoot-
ing and instructions for testing the installation.

D. Experiment Workflow

To run QUACK’s main analysis, based on which the results
are generated, invoke the main runner script as follows:
python runner.py --all-projects all

On a high level, the runner will build QUACK’s engine
in a Docker container, copy over all evaluated projects, and
perform its analysis. For each project, it will first invoke
the sub-component of QUACK that performs the available
class computation, as described in Section VI of the paper.
Next, it will invoke the script that performs the duck-typing-
based type-inference (described in Section V of the paper)
for each evaluated deserialization API, and store the resulting
deduced types. Note that this does not yet produce the final
set of allowed classes and blocked gadgets; these results are
produced by other scripts (see XII-F). For more details about
the runner and each sub-component, please see our README.

Note that the image creation step will take around 10
minutes while running the experiments themselves will ap-
proximately take an additional hour.

E. Major Claims

• (C1): QUACK greatly reduces the set of allowed classes
at each evaluated deserialization API call, subsequently
reducing the number of gadgets available to an attacker.
Also, each of QUACK’s sub-components (i.e., the avail-
able class calculation and the static duck-typing-based
type inference) contributes to the gadget reduction (Tables
II and V in the paper). This is proven by experiment (E1).

• (C2): The gadgets blocked by QUACK’s analysis prevent
FUGIO from successfully generating exploits (Table III
in the paper). This is proven by experiment (E2).

F. Evaluation

The following experiments are based on the results of the
main analysis, described in XII-D. Please run the main analysis
before carrying out these experiments.

1) Experiment (E1): [Gadget reduction & ablation study]:
this experiment will parse QUACK’s analysis and produce the
number of blocked gadgets, along with a summary of how
much each of QUACK’s sub-components contributed to the
gadget reduction (Tables II and V in the paper – Table II is
just a subset of Table V).

[Preparation] Run QUACK’s analysis as described in XII-D.

[Execution] Run:
python all_deduce_allowed_classes.py
--all-projects all

This script will gather the results produced by all the sub-
components invoked by the runner and calculate the final set
of available gadgets for each analyzed deserialization call,
as well as the results when (not) taking into account the
available class and type-inference analyses (i.e., our ablation
study, corresponding to Table V).

[Results] The results will be printed to standard output
(the last column, named QUACKSHIELD, corresponds to the
results for the full system, i.e., Table II). Intermediate analysis
results used by this script can be found under each project’s re-
sult directory (i.e., PHP/processed/<project_name>),
in the following files: joe_analyze.out for the type-
inference results, avail_classes.json for the avail-
able class computation results, and accum_info.json and
accum_info_focus.json for gadgets and class informa-
tion results. The produced numbers may not exactly match the
numbers in the table, since QUACK downloads dependencies
for each project on the fly, and the number of gadgets in
the dependencies can change with code updates. However,
the general result should be the same: QUACK should greatly
reduce the number of available gadgets in each project.

2) Experiment (E2): [exploitability of allowed classes]: this
experiment will examine whether exploits can be realized for
the set of allowed classes that QUACK determines, correspond-
ing to Table III of the paper.

[Preparation] Run QUACK’s analysis as described in XII-D.
[Execution] Run:

python fugio_inject_allowed.py
This script will determine the total number of gadgets are

contained in the classes in the set of allowed classes at a
deserialization call site. This number represents the number
of gadgets that an attacker has available for an exploit chain.

If the script determines that the set is non-empty and
contains a class with one or more useable gadgets (i.e., the
accumulated number of gadgets is greater than zero), then
FUGIO may be used to attempt to generate viable exploit
chains using the gadgets contained in the allowed classes.

If the script determines that the set is empty or does not
contain a class with one or more useable gadgets (i.e., the
accumulated number of gadgets is zero), or FUGIO fails to
generate any exploit chains, then we conclude that exploits
are unlikely to exist for this set of allowed classes.

[Results] The results of the script will be printed to standard
output, indicating the number of gadgets contained in the set
of allowed classes. The script advises on whether FUGIO is
recommended to attempt to realize an exploit. In all cases of
evaluated vulnerabilities from the FUGIO dataset, the number
of gadgets in the set of allowed classes is zero, so no exploit
can be realized.

18

https://figshare.com/s/c2f0dfa05d42ebd7317c?file=42923047

	Introduction
	Background
	Serialization and Deserialization
	Deserialization Vulnerabilities and Exploitation
	Data-injection attacks
	Type-confusion attacks
	Arbitrary-command-evaluation attacks

	Mitigating Deserialization Attacks
	Inferring Allowed Classes

	Threat Model and Limitations
	Adversarial capabilities
	Hardening Assumptions
	Limitations

	Overview
	Motivating Example
	Using Quack to Protect Deserialization APIs

	Protecting Deserialization via Static Duck Typing
	Statically Computing Minimal Guaranteed Deserialization-Available Classes for PHP
	Class loading in PHP
	Constructing and Traversing the Class-Def-Graph

	Implementation
	Evaluation
	Experiment Setup
	RQ1: How well does Quack reduce the exploitability of deserialization vulnerabilities?
	RQ2: What is the analysis runtime of Quack?
	RQ3: How do the different components of Quack contribute to its success?

	Discussion
	Updating Serialized Objects
	Expanding Quack To Additional Languages

	Related Work
	Conclusion
	References
	Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Experiment Workflow
	Major Claims
	Evaluation
	Experiment (E1)
	Experiment (E2)

